

# DIRTY THIRTY Industrial sector emissions in Germany

In cooperation with:



### **PUBLICATION DETAILS**

| Publisher     | WWF Germany                             |
|---------------|-----------------------------------------|
| Date          | May 2023                                |
| Coordination  | Lisa-Maria Okken/WWF                    |
| Authors       | Hauke Hermann, Lukas Emele/Öko-Institut |
| Contact       | lisa-maria.okken@wwf.de                 |
| Editing       | Thomas Koeberich/WWF                    |
| Design        | Anita Drbohlav; Thomas Schlembach/WWF   |
| Photo credits | imago-images, D. Seiffert/WWF           |

© 2023 WWF Germany, Berlin. May only be reproduced in whole or in part with the permission of the publisher.



# Contents

| Foi | reword and demands                                                                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| Su  | mmary                                                                                                                                  |
| 1   | Introduction                                                                                                                           |
| 2   | Sector targets for 2030 and sectoral developments to date                                                                              |
| 3   | ETS industrial emissions                                                                                                               |
| 4   | The sub-sectors in detail<br>Sub-sector 1 – Iron and steel<br>Sub-sector 2 – Cement and lime<br>Sub-sector 3 – Chemicals<br>Refineries |
| 5   | Detailed analysis of iron and steel                                                                                                    |





Viviane Raddatz Head of Climate and Energy

### **Foreword and Policy recommendations**

The energy sector has, quite rightly, been at the heart of climate policy for many years now and it is still the largest source of greenhouse gas emissions. However, with the phasing out of coal and the development of renewable energy, the energy sector was the only sector to be able to significantly reduce its emissions: by approximately 36% between 2013 and 2021.<sup>a</sup> In the wake of these developments, the sector with the secondhighest emissions in Germany remained at a largely constant level of emissions for much longer than was deemed reasonable from a climate protection perspective: industry.

The industrial sector alone was responsible for a quarter of all German emissions in 2021. Between 2013 and 2021, emissions even increased slightly. One of the reasons for this was the free allocation of  $CO_2$  certificates received by industry within the framework of the EU Emissions Trading System. Industry does not pay for all the  $CO_2$  emissions that it emits. This weakens the  $CO_2$  price signal – and an important incentive to change over to climate-friendly procedures and technologies is lost. Although emissions from the industrial sector fell by 10% in 2022 compared to the previous year, this can be attributed primarily to a decline in production due to high natural gas prices. To date, extensive structural reductions in emissions have not been achieved.

With the anticipated reduction in emissions in the energy sector expected by 2030, there is an increasing focus on the industrial sector – the sector with the second-highest emissions in absolute terms after those in the energy sector – to ensure that Germany is finally on track to meet its climate commitments in terms of overall emissions.

This analysis has set itself the task of documenting the main individual emitters responsible for most of the emissions from industry and the industrial branches in Germany that have the largest emissions. The data reported for industrial installations in the European Emissions Trading System is used to determine this information.

The 30 most heavily polluting industrial installations alone are responsible for around one-third of the emissions in the industrial sector. In particular, a lot of coal is still used in the production of iron and steel and in the manufacture of cement. Effective and efficient measures to reduce the emissions of the 30 largest emitters are therefore very important in attaining the sector target in industry. Individual companies have an enormous influence on whether Germany can reach its climate goals. The most emission-intensive installations are involved in the production of iron and steel. The first 13 places in the list are occupied by installations in the iron and steel industry. In 2022, this industry as a whole was responsible for emissions amounting to 51 million tons of  $CO_2$ .

a www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-indeutschland

Approximately half of the key industrial installations involved in German basic industries will require reinvestment by 2030.<sup>b</sup> The life span of large industrial plants often amounts to several decades. Investment decisions that are now being made will significantly shape the image of industry in the coming decades. These upcoming, major investment cycles must now be used to achieve climate neutrality by 2045.

The world has the technologies for the decarbonisation of industry. For example, in the steel industry coal-based blast furnaces can now be relegated to the past, as the blast furnace route transitions to green hydrogen for the production of green steel. The cement industry can cut its levels of CO<sub>2</sub> significantly by reducing the proportion of clinker in cement.<sup>c</sup>

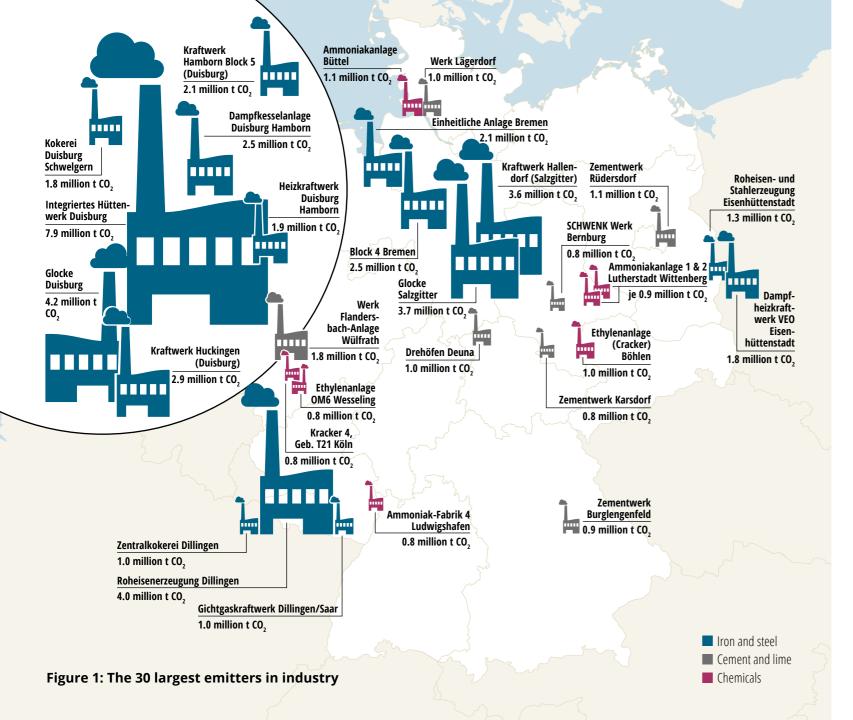
It is imperative for German industry to reform in a way that is both competitive and climate friendly. Germany has the opportunity and responsibility to become a trailblazer in the transformation of industry and thus show that it is possible for industry to be both climate friendly and competitive. In order get a successful climate policy for industry off the ground in Germany, WWF is calling for the speedy implementation of the following policy measures:

- In the latest reform of the European Emissions Trading System, it was agreed to **end free allowances by 2034.** That is too late. From WWF's perspective, a significantly earlier phasing out would have led faster to an effective price signal, thus incentivising decarbonisation. In order to avoid disincentives for as long as possible, the free allowance must be linked to conditions.
- These conditions should be implemented not only in the context of free allowances, but generally when granting subsidies and reliefs to industry.
- In this regard, companies should be required to set scientifically sound climate and environmental targets (Science Based Targets) and submit **medium- to long-term plans for transformation.** Additionally, the money received should be linked to investments made by the companies in energy efficiency, climate-friendly processes and the development of renewable energies.
  - To this end, companies should operate mandatory energy and environment management systems, which must be supplemented by greenhouse gas extension tables. An analysis recently published by WWF also came to this conclusion.<sup>d</sup>

- It is a matter of urgency for climate protection in the industrial sector that a **comprehensive industry strategy** announced in the coalition agreement strategically consolidates the individual measures in the sector. It is necessary, therefore, to urgently specify additional measures beyond the existing regulations or the programmes that have already been decided upon, which would help to close gaps in terms of ambition and delivery and thus contribute to the attainment of climate targets in the industrial sector. Moreover, it is essential to incorporate the necessary infrastructure development. It is only by implementing a comprehensive strategy for the entire sector that the urgently needed planning and investment security can be guaranteed for industry.
- Implementation of carbon contracts for difference (CCfDs):
  - CCfDs can give industry the necessary planning and investment security, as long as the price for CO<sub>2</sub> has not reached the required level and there are incentives to switch over to climate-friendly technologies and production processes.
  - CCfDs must not be used for subsidising blue hydrogen, as otherwise lock-in-effects may occur, and a transition to green hydrogen could be delayed.

b https://www.agora-energiewende.de/fileadmin/Projekte/2018/Dekarbonisierung\_ Industrie/164\_A-EW\_Klimaneutrale-Industrie\_Studie\_WEB.pdf

c https://newclimate.org/sites/default/files/2020/12/SGCCC-EU-Cement-paper-NewClimate\_Nov2020.pdf


d https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Klima/WWF-industrieentlastungen-hemmnis.pdf

- The carbon management strategy announced by the German Federal Government is intended to clearly specify that carbon capture and storage technology (CCS technology) is used only for unavoidable process-related emissions – which occur primarily in the cement industry – and not for energy-related emissions and other emissions that can be avoided by changing over to more environmentally friendly processes.
- The **circular economy** is still given too little consideration in industrial processes. In particular, measures and technologies that reduce resource consumption and improve material efficiency are required.
  - To do this, binding resource targets, based on the model of climate targets, are to be specified.
  - A financial and tax policy that is geared towards a circular economy, encourages investment in circular business models (circular funding), phases out environmentally harmful subsidies and imposes a fiscal burden on resourceintensive production and consumption practices is urgently required. Above all, this would abolish the distortive benefits for resource-intensive technologies and practices and is therefore a feature of a market-regulating economic policy.
  - Moreover, companies should be offered incentives to promote a shift in values and implement a circular economy within their company.

- A sustainable reorganisation of public procurement could have a profound impact on climate protection, the circular economy and the creation of green lead markets. Public procurement in Germany alone entails an annual investment volume of EUR 500 billion.<sup>e</sup> However, contracts are still awarded primarily on the basis of economic efficiency with no consideration for the true environmental costs.
  - This could be comprehensively implemented, for example, through the introduction of climate protection criteria in the awarding of public construction contracts. Consideration could be given to setting greenhouse gas limits and minimum recycling rates as binding quality criteria for materials that are particularly relevant for climate protection and the required use of certificates that focus heavily on climate protection. Such environmental criteria can be either prescribed as a mandatory performance requirement or deemed to be part of the award criteria.<sup>f</sup>

e https://www.bmi.bund.de/SharedDocs/behoerden/DE/bescha.html f https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-KSG-Gutachten-3-Klimaschutzmassnahmen-im-Industriesektor.pdf





### Summary

In this brief analysis, the Öko-Institut (Institute for Applied Ecology) has analysed those emissions from industrial installations that are covered by the EU Emissions Trading System (EU ETS). Table 1 shows the 30 industrial installations (excluding refineries) that emitted the most  $CO_2$  in 2022. These installations emitted a total of 58 million tons of  $CO_2$  in 2022. This corresponds to almost one-third of industrial emissions as defined in the German Climate Change Act (Klimaschutzgesetz, KSG) (177 million tons of  $CO_2$  equivalents) or 8% of Germany's total greenhouse gas emissions in 2022.

In terms of emissions, the top 13 installations are involved in the production of iron and steel. In 14th place is a lime manufacturing installation.

In 2022, high natural gas prices and the associated decline in production led to a reduction of 10% in emissions from the industrial sector as a whole.

#### Table 1: The 30 largest emitters in industry

|    |         |                                     |                                    |                  |          | Emi  | ssions (milli | on t CO <sub>2</sub> ) |
|----|---------|-------------------------------------|------------------------------------|------------------|----------|------|---------------|------------------------|
|    | EUTL ID | Company                             | Installation                       | City             | Activity | 2021 | 2022          | 2022 vs. 2021          |
| 1  | DE 69   | thyssenkrupp Steel Europe           | Integriertes Hüttenwerk Duisburg   | Duisburg         | 24       | 7.8  | 7.9           | 1%                     |
| 2  | DE 53   | Hüttenwerke Krupp Mannesmann        | Glocke Duisburg                    | Duisburg         | 24       | 4.9  | 4.2           | -14%                   |
| 3  | DE 52   | ROGESA Roheisengesellschaft Saar    | Roheisenerzeugung Dillingen        | Dillingen/Saar   | 24       | 4.3  | 4.0           | -7%                    |
| 4  | DE 43   | Salzgitter Flachstahl               | Glocke Salzgitter                  | Salzgitter       | 24       | 3.7  | 3.7           | -2%                    |
| 5  | DE 1132 | Salzgitter Flachstahl               | Kraftwerk Hallendorf               | Salzgitter       | 20       | 3.6  | 3.6           | -2%                    |
| 6  | DE 1486 | Hüttenwerke Krupp Mannesmann        | Kraftwerk Huckingen                | Duisburg         | 20       | 3.2  | 2.9           | -10%                   |
| 7  | DE 1228 | ArcelorMittal Bremen                | Block 4 Bremen                     | Bremen           | 20       | 2.5  | 2.5           | -2%                    |
| 8  | DE 1415 | thyssenkrupp Steel Europe           | Dampfkesselanlage Duisburg Hamborn | Duisburg         | 20       | 3.1  | 2.5           | -20%                   |
| 9  | DE 60   | ArcelorMittal Bremen                | Einheitliche Anlage Bremen         | Bremen           | 24       | 2.3  | 2.1           | -7%                    |
| 10 | DE 1850 | thyssenkrupp Steel Europe           | Kraftwerk Hamborn Block 5          | Duisburg         | 20       | 2.4  | 2.1           | -14%                   |
| 11 | DE 1411 | thyssenkrupp Steel Europe           | Heizkraftwerk Duisburg Hamborn     | Duisburg         | 20       | 1.5  | 1.9           | 26%                    |
| 12 | DE 65   | thyssenkrupp Steel Europe           | Kokerei Duisburg Schwelgern        | Duisburg         | 22       | 1.9  | 1.8           | -3%                    |
| 13 | DE 1386 | Vulkan Energiewirtschaft Oderbrücke | Dampfheizkraftwerk VEO             | Eisenhüttenstadt | 20       | 1.7  | 1.8           | 4%                     |
| 14 | DE 147  | Rheinkalk                           | Werk Flandersbach-Anlage           | Wülfrath         | 30       | 1.7  | 1.8           | 4%                     |
| 15 | DE 70   | ArcelorMittal Eisenhüttenstadt      | Roheisen- und Stahlerzeugung       | Eisenhüttenstadt | 24       | 1.7  | 1.3           | -25%                   |
| 16 | DE 81   | CEMEX Zement                        | Zementwerk Rüdersdorf              | Rüdersdorf       | 29       | 1.3  | 1.1           | -9%                    |

|    |              |                                  |                                  |                        |          | Emi  | ssions (milli | on t CO <sub>2</sub> ) |
|----|--------------|----------------------------------|----------------------------------|------------------------|----------|------|---------------|------------------------|
|    | EUTL ID      | Company                          | Installation                     | City                   | Activity | 2021 | 2022          | 2022 vs. 2021          |
| 17 | DE 205626    | Yara Brunsbüttel                 | Ammoniakanlage                   | Büttel                 | 43       | 1.1  | 1.1           | 2%                     |
| 18 | DE 116       | Dyckerhoff                       | Drehöfen Deuna                   | Deuna                  | 29       | 1.1  | 1.0           | -3%                    |
| 19 | DE 4137      | Dillinger Hüttenwerke und ROGESA | Gichtgaskraftwerk Dillingen/Saar | Dillingen/Saar         | 20       | 1.2  | 1.0           | -11%                   |
| 20 | DE 49        | Zentralkokerei Saar              | Zentralkokerei Dillingen         | Dillingen/Saar         | 22       | 1.1  | 1.0           | -4%                    |
| 21 | DE 3596      | Dow Olefinverbund                | Ethylenanlage (Cracker) Böhlen   | Böhlen                 | 42       | 1.1  | 1.0           | -15%                   |
| 22 | DE 74        | Holcim                           | Werk Lägerdorf                   | Lägerdorf              | 29       | 1.1  | 1.0           | -9%                    |
| 23 | DE 202455    | SKW Stickstoffwerke Piesteritz   | Ammoniakanlage 2                 | Lutherstadt Wittenberg | 41       | 1.3  | 0.9           | -32%                   |
| 24 | DE 202457    | SKW Stickstoffwerke Piesteritz   | Ammoniakanlage 1                 | Lutherstadt Wittenberg | 41       | 1.2  | 0.9           | -30%                   |
| 25 | DE 109       | HeidelbergCement                 | Zementwerk Burglengenfeld        | Burglengenfeld         | 29       | 1.0  | 0.9           | -16%                   |
| 26 | DE 83        | OPTERRA Zement                   | Zementwerk Karsdorf              | Karsdorf               | 29       | 1.0  | 0.8           | -12%                   |
| 27 | DE 2196      | Basell Polyolefine               | Ethylenanlage OM6 Wesseling      | Wesseling              | 42       | 0.9  | 0.8           | -9%                    |
| 28 | DE 201960    | BASF                             | Ammoniak-Fabrik 4                | Ludwigshafen           | 41       | 0.9  | 0.8           | -12%                   |
| 29 | DE 100       | SCHWENK Zement                   | SCHWENK Werk Bernburg            | Bernburg               | 29       | 0.8  | 0.8           | 0%                     |
| 30 | DE 2294      | INEOS Manufacturing Deutschland  | Kracker 4, Geb. T21 Köln         | Köln                   | 42       | 0.8  | 0.8           | -5%                    |
|    | Total        |                                  |                                  |                        |          | 62.1 | 57.8          | -7%                    |
|    | Percentage c |                                  | 8%                               |                        |          |      |               |                        |

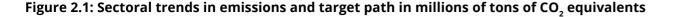


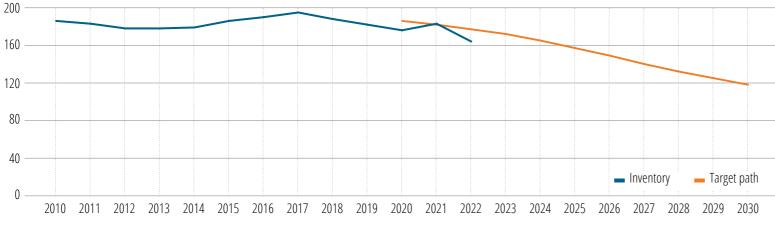
### **1** Introduction

While the phasing out of coal has meant that the energy sector has been responsible for significantly fewer emissions in recent years, emissions in the industrial sector remained virtually constant up until 2021. It is now time to take a closer look at this sector in order to ensure that it too meets its emission reduction goals. After all, this is the sector with the secondhighest emissions in absolute terms after those of the energy sector. This analysis has set itself the task of documenting the major individual emitters responsible for most of the emissions from industry and the industrial branches in Germany that have the largest emissions.

The analysis consists of the following chapters:

- Chapter 2 presents the industry sector targets as defined by the German Climate Change Act (KSG) and explains the sectoral delimitation.
- Chapter 3 analyses which industrial sub-sector dominate the ETS emissions.
- Chapter 4 presents the 30 largest installations in the individual sub-sectors.
- Chapter 5 rounds off this study with a detailed analysis of the iron and steel sub-sector taking into account blast furnace gas flows between installations of integrated steelworks.


# 2 Sector targets for 2030 and sectoral developments to date


Figure 2.1 shows the historic emissions from the industrial sector based on the definition in the German Climate Change Act (KSG). On 28 March 2023, Germany's coalition committee decided to modify the Climate Change Act. "In future, compliance with the climate targets is to be monitored using a cross-sector and multi-year account. (...) The Federal Government will continue to present the annual monitoring report on emission trends. In this, the reduction achieved will be stated transparently for each sector."<sup>1</sup>

The exact mode of implementation has yet to be decided. It is likely, however, that the sector target for industry will remain unchanged but that ministerial responsibility for compliance with the target will be more widely distributed.

In 2021, emissions from the industrial sector amounted to 183 million tons of  $CO_2$  equivalents. This was a slight increase on the 2013 figures: back then, the emissions amounted to 178 million tons of  $CO_2$  equivalents. Industry has a sector target of 118 million tons of  $CO_2$  equivalents for 2030. To achieve this, an annual emissions reduction of somewhat less than 10 million tons of  $CO_2$  equivalents will be necessary. Compared with the previous year, an emissions reduction of 19 million tons of  $CO_2$ equivalents was achieved in 2022, representing a reduction of 10%. This is mainly the result of crisis-related declines in production; however, there have been no reductions in structural emissions. Emissions are expected to rise again next year.

The sector target for industry is defined in the KSG using the greenhouse gas inventories.<sup>2</sup> Table 2.1 lists the main emission sources in industry and their development over time. In addition to CO2, other greenhouse gases are reported in the industrial sector as it is defined by the KSG. In addition to large industrial installations that are subject to the ETS, such as steel and cement works, the industrial sector also includes many other activities other than those covered by the EU ETS. For example, the industrial sector includes emissions from mobile machinery in the construction industry. All emissions of fluorinated greenhouse gases (F-gases), for example from mobile and stationary air-conditioning units, are reported in the industrial sector; these also cover the large number of cooling systems in the food industry (reported under "Other process emissions" in Table 2.1).





Source: Annex 2 KSG, UBA trend tables "Target path graphic"

<sup>1</sup> https://www.wiwo.de/downloads/29065906/3/ergebnis-koalitionsausschuss-28-marz-2023\_230328\_200642.pdf

<sup>2</sup> The German Environment Agency (Umweltbundesamt, UBA) reports each year on Germany's greenhouse gas emissions in the greenhouse gas inventories. In the energy sector, the inventories are based on fuel sales taken from the energy balance (top-down approach). For further information, see: https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/wie-funktioniert-die-berichterstattung

#### Table 2.1: Emission sources in the KSG industrial sector

| Emission source                                              | 1990  | 2013  | 2014  | 2015   | 2016                       | 2017   | 2018  | 2019  | 2020  |
|--------------------------------------------------------------|-------|-------|-------|--------|----------------------------|--------|-------|-------|-------|
|                                                              |       |       |       | Millio | n t CO <sub>2</sub> equiva | alents |       |       |       |
| Combustion-related emissions                                 | 186.8 | 118.7 | 118.6 | 127.3  | 129.6                      | 131.6  | 126.4 | 123.5 | 116.4 |
| Iron and steel incl. blast furnace gas power plants          | 35.5  | 33.3  | 33.8  | 40.2   | 37.6                       | 37.4   | 37.3  | 36.6  | 32.7  |
| Minerals industry                                            | 18.8  | 12.8  | 13.4  | 13.3   | 13.2                       | 13.5   | 13.2  | 13.0  | 12.7  |
| Industrial power plants excl. blast furnace gas power plants | 56.2  | 32.2  | 30.8  | 32.9   | 32.7                       | 38.7   | 44.5  | 44.6  | 43.8  |
| Miscellaneous stationary equipment                           | 72.6  | 37.3  | 37.4  | 37.4   | 42.5                       | 38.2   | 28.0  | 25.8  | 23.6  |
| Construction industry                                        | 3.7   | 3.1   | 3.2   | 3.5    | 3.7                        | 3.8    | 3.5   | 3.5   | 3.6   |
| Process emissions                                            | 96.9  | 61.3  | 61.2  | 60.2   | 63.7                       | 65.9   | 63.0  | 59.8  | 55.5  |
| Iron and steel                                               | 28.2  | 15.9  | 17.3  | 16.9   | 20.3                       | 21.8   | 20.1  | 18.2  | 15.8  |
| Minerals industry                                            | 23.5  | 19.0  | 19.6  | 19.2   | 19.2                       | 19.8   | 19.7  | 19.4  | 19.0  |
| Chemicals industry                                           | 35.5  | 9.6   | 7.6   | 6.9    | 7.0                        | 6.9    | 6.7   | 6.5   | 6.5   |
| Other process emissions                                      | 9.7   | 16.8  | 16.8  | 17.2   | 17.3                       | 17.4   | 16.4  | 15.7  | 14.2  |
| KSG industry as a whole                                      | 283.7 | 180.1 | 179.8 | 187.5  | 193.4                      | 197.5  | 189.4 | 183.3 | 171.9 |

Source: Database of emissions (Zentrales System Emissionen) operated by the German Environment Agency and Common Reporting Format (CRF) tables, as of Submission 2022

The sectoral delimitation in the KSG is different from that in the EU ETS. This is because the German Emissions Trading Authority (Deutsche Emissionshandelsstelle, DEHSt) and the European Environment Agency (EEA) use industrial sector delimitations in their publications that are guided by the numbers in the German Greenhouse Gas Emissions Trading Act (Treibhausgas-Emissionshandelsgesetz, TEHG) or more specifically the activity numbers. These delimitations do not correspond with the methodology used for the greenhouse gas inventory and thus the sectoral delimitation in the KSG. Emissions data from the EU ETS reports therefore cannot be readily transferred to the KSG structure.<sup>3</sup> For example, the DEHSt and the EEA classify refineries in the category of industrial plants, whereas they are allocated to the energy sector in the greenhouse gas inventory – and therefore also in the KSG. While all power plants are reported jointly as part of the activity "Combustion installations" in emissions trading, a distinction is made in the inventory between public power plants (energy sector) and industrial power plants (industrial sector).

In the following chapters, the analysis focuses on the emissions reported in EU ETS emissions trading on a installation basis. The focus is therefore on industrial activities. Industrial power plants other than blast furnace power plants and combustion installations serving industrial plants are not considered.



<sup>3</sup> In particular, see Section 3.3 of the Öko-Institut report (2021): Datenkonzepte im EU-Emissionshandel, https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2022-06-03\_cc\_75-2021\_ets-handbuch\_datenkonzepte.pdf



# **3 Industrial ETS emissions**

Most of the emissions from the industrial sector (as defined by the KSG) are covered by the EU ETS Emissions Trading System. In the EU ETS emissions trading, a distinction is made between combustion installations with activity 20 and refineries with activity 21, as well as other industrial activities. For this analysis, eight blast furnace gas power plants with total emissions of roughly 20 million tons of  $CO_2$  (these are also taken into consideration among the 30 largest emitters) were identified from the group of combustion installations. The emissions from these blast furnace gas power plants are allocated to the iron and steel sub-sector in Table 4.1. In EU emissions trading, industrial power plants and combustion installations serving industrial plants (activity 20). In the KSG delimitation, these emissions are also allocated to the industrial sector. However, they were not identified in this analysis and are therefore not considered.

Table 3.1 shows the trend in emissions since 2013. In 2013, the scope of the ETS was expanded (additional plants and additional emissions were included), with the result that a consistent comparison of emissions, without correction calculations, has only been possible since 2013. It is clear that emissions from combustion installations fell by 36% between 2013 and 2021. During the same period, emissions arising from industrial activities only fell by 2%. Compared with 2022 and 2021, the trend was reversed. In 2022, emissions from combustion installations (activity 20) increased by 3% compared to the previous year, while emissions arising from industrial activities declined by 8%.

The following three industrial sub-sectors with the highest emissions were identified for a more in-depth analysis.

- With 51 million tons of CO<sub>2</sub>, emissions from the production of iron and steel proved to be the largest sub-sector (47% of industrial ETS activities).
- In second place are emissions from the production of cement and lime, which caused 27 million tons of CO<sub>2</sub> emissions in 2022 (25% of industrial ETS activities).
- In third place is the chemicals industry, which was responsible for 14 million tons of CO<sub>2</sub> in 2022 (15% of industrial ETS activities).

In total, 87% of emissions from industrial ETS activities can be attributed to these three sub-sectors. Table 4.4 also shows the emissions from refineries, which are classified as belonging to the energy sector in the KSG.

Overall, the emissions arising from industrial ETS activities in 2022 fell by 9 million tons compared to the previous year. This corresponds to a reduction of 8%. The decline was below average in a number of activities – iron and steel, cement and lime, and glass, brick and ceramics – while it was above average in chemicals, paper and non-ferrous metals.

#### Table 3.1: Aggregated trends in ETS emissions by activity in million t CO<sub>2</sub>

| Activity                                | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2021 vs.<br>2013 | 2022 vs.<br>2021 | Share of<br>industrial<br>activities |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------------------|------------------|--------------------------------------|
| Total                                   | 481  | 461  | 456  | 453  | 438  | 423  | 363  | 320  | 355  | 353  | -26%             | -1%              |                                      |
| Combustion installations                | 338  | 318  | 313  | 310  | 293  | 280  | 226  | 191  | 218  | 225  | -35%             | 3%               |                                      |
| Refineries                              | 25   | 23   | 24   | 24   | 24   | 23   | 22   | 21   | 21   | 22   | -13%             | 4%               |                                      |
| Industrial activities                   | 118  | 120  | 119  | 119  | 121  | 120  | 115  | 108  | 115  | 106  | -2%              | -8%              | 100%                                 |
| Iron and steel                          | 56   | 58   | 58   | 58   | 59   | 58   | 55   | 48   | 54   | 51   | -3%              | -6%              | 47%                                  |
| Cement and lime                         | 28   | 29   | 28   | 28   | 30   | 29   | 29   | 28   | 29   | 27   | 3%               | -6%              | 25%                                  |
| Chemicals                               | 18   | 18   | 18   | 18   | 18   | 18   | 17   | 17   | 17   | 14   | -7%              | -17%             | 15%                                  |
| Glass, brick, ceramics                  | 6    | 6    | 6    | 6    | 6    | 7    | 6    | 6    | 6    | 6    | -3%              | -3%              | 5%                                   |
| Paper                                   | 6    | 6    | 6    | 6    | 6    | 6    | 5    | 5    | 5    | 5    | -7%              | -12%             | 5%                                   |
| Non-ferrous metals<br>(incl. aluminium) | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    | 3%               | -21%             | 3%                                   |

Note: Combustion installations exclude blast furnace gas power plants; iron and steel include blast furnace gas power plants; the share of industrial activities relates to 2021 Source: EUTL<sup>4</sup>

<sup>4</sup> https://climate.ec.europa.eu/document/download/8f79885d-c567-4db2-9711-71ee8a29a037\_en?filename=policy\_ets\_registry\_verified\_emissions\_2022\_en\_1.xlsx

### Table 3.2: Trend in ETS emissions by activity in million t $CO_2$

| Activity |                                      | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  |
|----------|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 20-99    | Total                                | 481.0 | 461.2 | 455.6 | 452.8 | 437.6 | 422.8 | 363.3 | 320.3 | 355.1 | 353.3 |
| 20       | Combustion excl. blast furnace gases | 338.4 | 318.3 | 312.5 | 309.8 | 292.5 | 280.3 | 226.3 | 191.2 | 218.3 | 225.2 |
| 21       | Refineries                           | 24.5  | 23.4  | 23.7  | 23.9  | 23.6  | 22.6  | 22.2  | 21.5  | 21.4  | 22.3  |
| 22-99    | Industrial activities                | 118.1 | 119.5 | 119.4 | 119.1 | 121.4 | 120.0 | 114.8 | 107.6 | 115.4 | 105.8 |
| 22       | Coking plants                        | 3.7   | 3.8   | 3.8   | 3.9   | 4.0   | 3.9   | 3.7   | 3.3   | 3.7   | 3.8   |
| 23       | Metal ores                           | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   |
| 24       | Pig iron and steel                   | 28.2  | 28.6  | 29.5  | 28.6  | 29.9  | 30.1  | 28.3  | 25.1  | 28.3  | 26.4  |
| 20       | Blast furnace gas power plants       | 20.6  | 21.2  | 21.3  | 21.3  | 20.8  | 19.9  | 19.1  | 16.6  | 19.2  | 18.1  |
| 25       | Ferrous metals                       | 3.9   | 3.8   | 3.7   | 3.8   | 3.8   | 3.8   | 3.3   | 2.9   | 3.2   | 2.8   |
| 26       | Primary aluminium                    | 1.4   | 1.4   | 1.4   | 1.4   | 1.4   | 1.4   | 1.3   | 1.4   | 1.3   | 1.0   |
| 27       | Secondary aluminium                  | 0.5   | 0.5   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.5   | 0.6   | 0.5   |
| 28       | Non-ferrous metals                   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   | 0.8   |
| 29       | Cement clinker                       | 19.0  | 19.6  | 19.1  | 19.3  | 20.5  | 20.0  | 20.0  | 20.1  | 20.5  | 18.8  |
| 30       | Lime                                 | 9.3   | 9.3   | 9.2   | 9.1   | 9.3   | 9.4   | 8.8   | 8.2   | 8.8   | 8.7   |
| 31       | Glass                                | 3.7   | 3.8   | 3.8   | 3.8   | 3.7   | 3.8   | 3.7   | 3.6   | 3.7   | 3.7   |
| 32       | Ceramics                             | 2.1   | 2.1   | 2.0   | 2.0   | 2.0   | 2.1   | 2.0   | 1.9   | 1.9   | 1.7   |

| Activity | Activity                   |     | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
|----------|----------------------------|-----|------|------|------|------|------|------|------|------|------|
| 33       | Mineral fibres             | 0.3 | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.4  | 0.3  | 0.4  | 0.4  |
| 34       | Gypsum                     | 0.3 | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  | 0.3  |
| 35       | Wood pulp                  | 0.4 | 0.3  | 0.3  | 0.3  | 0.3  | 0.4  | 0.3  | 0.4  | 0.3  | 0.4  |
| 36       | Paper                      | 5.4 | 5.3  | 5.3  | 5.3  | 5.3  | 5.2  | 5.0  | 4.8  | 5.0  | 4.4  |
| 37       | Carbon black               | 0.6 | 0.7  | 0.7  | 0.7  | 0.6  | 0.6  | 0.6  | 0.5  | 0.6  | 0.6  |
| 38       | Nitric acid                | 0.8 | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.6  | 0.6  | 0.4  | 0.3  |
| 39       | Adipic acid                | 0.1 | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  |
| 40       | Glyoxal and glyoxylic acid | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 41       | Ammonia                    | 4.7 | 4.3  | 4.5  | 4.5  | 4.5  | 4.6  | 4.4  | 4.5  | 4.6  | 3.1  |
| 42       | Basic chemicals            | 8.0 | 8.4  | 8.0  | 8.3  | 8.3  | 8.0  | 7.6  | 7.9  | 8.0  | 6.9  |
| 43       | Hydrogen and synthesis gas | 3.4 | 3.2  | 3.0  | 3.2  | 3.2  | 3.1  | 3.1  | 3.0  | 2.8  | 2.6  |
| 44       | Soda                       | 0.5 | 0.6  | 0.6  | 0.5  | 0.6  | 0.5  | 0.6  | 0.5  | 0.5  | 0.5  |

Note: Combustion installations exclude blast furnace gas power plants; industrial activity includes blast furnace gas power plants Source: EUTL

# **4 The sub-sectors in detail** Sub-sector 1 – Iron and steel

Emissions from the production of iron and steel are concentrated in the six integrated steelplants furnace sites in Germany (see Chapter 5). The individual sites consist of various ETS installations. These generally include coking plants, blast furnaces, blast furnace gas power plants, and processing plants. The installation with the highest emissions is in Duisburg: it emits 8 million tons of  $CO_2$  and is operated by thyssenkrupp (Table 4.1).



#### Table 4.1: Iron and steel – 30 largest emitters

|    |         |                                     |                                    |                  |          | Emis | ssions (milli | on t CO <sub>2</sub> ) |
|----|---------|-------------------------------------|------------------------------------|------------------|----------|------|---------------|------------------------|
|    | EUTL ID | Company                             | Installation                       | Town/city        | Activity | 2021 | 2022          | 2022 vs. 2021          |
| 1  | DE 69   | thyssenkrupp Steel Europe           | Integriertes Hüttenwerk Duisburg   | Duisburg         | 24       | 7.8  | 7.9           | 1%                     |
| 2  | DE 53   | Hüttenwerke Krupp Mannesmann        | Glocke Duisburg                    | Duisburg         | 24       | 4.9  | 4.2           | -14%                   |
| 3  | DE 52   | ROGESA Roheisengesellschaft Saar    | Roheisenerzeugung Dillingen        | Dillingen/Saar   | 24       | 4.3  | 4.0           | -7%                    |
| 4  | DE 43   | Salzgitter Flachstahl               | Glocke Salzgitter                  | Salzgitter       | 24       | 3.7  | 3.7           | -2%                    |
| 5  | DE 1132 | Salzgitter Flachstahl               | Kraftwerk Hallendorf               | Salzgitter       | 20       | 3.6  | 3.6           | -2%                    |
| 6  | DE 1486 | Hüttenwerke Krupp Mannesmann        | Kraftwerk Huckingen                | Duisburg         | 20       | 3.2  | 2.9           | -10%                   |
| 7  | DE 1228 | ArcelorMittal Bremen                | Block 4 Bremen                     | Bremen           | 20       | 2.5  | 2.5           | -2%                    |
| 8  | DE 1415 | thyssenkrupp Steel Europe           | Dampfkesselanlage Duisburg Hamborn | Duisburg         | 20       | 3.1  | 2.5           | -20%                   |
| 9  | DE 60   | ArcelorMittal Bremen                | Einheitliche Anlage Bremen         | Bremen           | 24       | 2.3  | 2.1           | -7%                    |
| 10 | DE 1850 | thyssenkrupp Steel Europe           | Kraftwerk Hamborn Block 5          | Duisburg         | 20       | 2.4  | 2.1           | -14%                   |
| 11 | DE 1411 | thyssenkrupp Steel Europe           | Heizkraftwerk Duisburg Hamborn     | Duisburg         | 20       | 1.5  | 1.9           | 26%                    |
| 12 | DE 65   | thyssenkrupp Steel Europe           | Kokerei Duisburg Schwelgern        | Duisburg         | 22       | 1.9  | 1.8           | -3%                    |
| 13 | DE 1386 | Vulkan Energiewirtschaft Oderbrücke | Dampfheizkraftwerk VEO             | Eisenhüttenstadt | 20       | 1.7  | 1.8           | 4%                     |
| 14 | DE 70   | ArcelorMittal Eisenhüttenstadt      | Roheisen- und Stahlerzeugung       | Eisenhüttenstadt | 24       | 1.7  | 1.3           | -25%                   |
| 15 | DE 4137 | Dillinger Hüttenwerke und ROGESA    | Gichtgaskraftwerk Dillingen/Saar   | Dillingen/Saar   | 20       | 1.2  | 1.0           | -11%                   |
| 16 | DE 49   | Zentralkokerei Saar                 | Zentralkokerei Dillingen           | Dillingen/Saar   | 22       | 1.1  | 1.0           | -4%                    |

|    |              |                                           |                                          |                |          | Emis | sions (millio | on t CO <sub>2</sub> ) |
|----|--------------|-------------------------------------------|------------------------------------------|----------------|----------|------|---------------|------------------------|
|    | EUTL ID      | Company                                   | Installation                             | Town/city      | Activity | 2021 | 2022          | 2022 vs. 2021          |
| 17 | DE 45        | ArcelorMittal Bremen                      | Kokerei Prosper (Ohne Kesselhaus)        | Bottrop        | 22       | 0.3  | 0.5           | 63%                    |
| 18 | DE 4151      | BRE.M.A Warmwalz                          | Warmwalzwerk                             | Bremen         | 24       | 0.5  | 0.5           | -8%                    |
| 19 | DE 56        | Dillinger Hüttenwerke                     | Stahlwerk Dillinger Hütte                | Dillingen/Saar | 24       | 0.4  | 0.4           | 3%                     |
| 20 | DE 4100      | RWE Power                                 | Herdofenanlage Fortuna-Nord              | Bergheim       | 22       | 0.4  | 0.4           | -8%                    |
| 21 | DE 3902      | Dillinger Hüttenwerke                     | Grobblechwalzwerk 2                      | Dillingen/Saar | 24       | 0.3  | 0.3           | 3%                     |
| 22 | DE 2495      | Salzgitter Flachstahl                     | Wärmöfen Warmbreitband-Walzwerk          | Salzgitter     | 25       | 0.3  | 0.3           | -10%                   |
| 23 | DE 59        | Saarstahl Aktiengesellschaft              | Stahlwerk Saarstahl                      | Völklingen     | 24       | 0.3  | 0.2           | -22%                   |
| 24 | DE 44        | ArcelorMittal Hochfeld                    | Stahlwerk Duisburg                       | Duisburg       | 24       | 0.2  | 0.2           | -4%                    |
| 25 | DE 203770    | Fritz Winter Eisengießerei                | Fritz Winter Eisengießerei Gmbh & Co. Kg | Stadtallendorf | 25       | 0.2  | 0.2           | -9%                    |
| 26 | DE 206009    | DK Recycling und Roheisen                 | Hochofenanlage                           | Duisburg       | 24       | 0.2  | 0.2           | -26%                   |
| 27 | DE 2496      | Saarstahl Aktiengesellschaft              | Walzwerk Nauweiler                       | Völklingen     | 24       | 0.1  | 0.1           | -5%                    |
| 28 | DE 41        | Lech-Stahlwerke                           | Lech-Stahlwerke                          | Meitingen      | 24       | 0.2  | 0.1           | -19%                   |
| 29 | DE 40        | Peiner Träger                             | Elektrostahlwerk – Einheitliche Anlage   | Peine          | 24       | 0.1  | 0.1           | -20%                   |
| 30 | DE 202991    | thyssenkrupp Steel Europe                 | Warmbandwerk 3                           | Bochum         | 24       | 0.2  | 0.1           | -31%                   |
|    | Total        |                                           |                                          |                |          | 50.6 | 47.8          | -6%                    |
|    | Proportion o | f "Dirty Thirty" in the sector as a whole |                                          |                |          |      | 93%           |                        |

### Sub-sector 2 – Cement and lime

Table 4.2 shows the 30 largest emitters in the production of cement and lime. Only three of the largest emitters on this list are lime plants. The other installations are classified as belonging to the cement industry. The largest installation involved in the production of cement and lime is the lime plant in Flandersbach, south of the Ruhr region, which emits 1.8 million tons of  $CO_2$ . The cement works with the highest  $CO_2$  emissions in Germany is the plant in Rüdersdorf (east of Berlin). On average, the cement works shown here emit 0.6 million tons of  $CO_2$  per installation.



#### Table 4.2: Cement and lime – 30 largest emitters

|    |         |                      |                                   |                |          | Emissions (million t CO <sub>2</sub> ) |      | on t CO <sub>2</sub> ) |
|----|---------|----------------------|-----------------------------------|----------------|----------|----------------------------------------|------|------------------------|
|    | EUTL ID | Company              | Installation                      | Town/city      | Activity | 2021                                   | 2022 | 2022 vs. 2021          |
| 1  | DE 147  | Rheinkalk            | Werk Flandersbach-Anlage          | Wülfrath       | 30       | 1.7                                    | 1.8  | 4%                     |
| 2  | DE 81   | CEMEX Zement         | Zementwerk Rüdersdorf             | Rüdersdorf     | 29       | 1.3                                    | 1.1  | -9%                    |
| 3  | DE 116  | Dyckerhoff           | Drehöfen Deuna                    | Deuna          | 29       | 1.1                                    | 1.0  | -3%                    |
| 4  | DE 74   | Holcim               | Werk Lägerdorf                    | Lägerdorf      | 29       | 1.1                                    | 1.0  | -9%                    |
| 5  | DE 109  | HeidelbergCement     | Zementwerk Burglengenfeld         | Burglengenfeld | 29       | 1.0                                    | 0.9  | -16%                   |
| 6  | DE 83   | OPTERRA Zement       | Zementwerk Karsdorf               | Karsdorf       | 29       | 1.0                                    | 0.8  | -12%                   |
| 7  | DE 100  | SCHWENK Zement       | SCHWENK Werk Bernburg             | Bernburg       | 29       | 0.8                                    | 0.8  | 0%                     |
| 8  | DE 105  | Dyckerhoff           | Drehofenanlage 8 Lengerich        | Lengerich      | 29       | 0.7                                    | 0.7  | 1%                     |
| 9  | DE 103  | Dyckerhoff           | Drehöfen Göllheim                 | Göllheim       | 29       | 0.8                                    | 0.7  | -4%                    |
| 10 | DE 99   | HeidelbergCement     | Zementwerk Schelklingen           | Schelklingen   | 29       | 0.8                                    | 0.7  | -17%                   |
| 11 | DE 80   | SCHWENK Zement       | SCHWENK WGS Standort Allmendingen | Allmendingen   | 29       | 0.7                                    | 0.7  | -5%                    |
| 12 | DE 149  | Rheinkalk            | Werk Hönnetal                     | Menden         | 30       | 0.8                                    | 0.7  | -11%                   |
| 13 | DE 94   | HeidelbergCement     | Zementwerk Lengfurt               | Triefenstein   | 29       | 0.7                                    | 0.7  | -4%                    |
| 14 | DE 108  | Spenner              | Spenner Drehofenanlage            | Erwitte        | 29       | 0.6                                    | 0.7  | 0%                     |
| 15 | DE 89   | HeidelbergCement     | Zementwerk Geseke                 | Geseke         | 29       | 0.7                                    | 0.6  | -7%                    |
| 16 | DE 117  | Gebr. Wiesböck & Co. | Werk Rohrdorf                     | Rohrdorf       | 29       | 0.8                                    | 0.6  | -14%                   |

|    |               |                                            |                                    |               |          | Emis | sions (millio | on t CO <sub>2</sub> ) |
|----|---------------|--------------------------------------------|------------------------------------|---------------|----------|------|---------------|------------------------|
|    | EUTL ID       | Company                                    | Installation                       | Town/city     | Activity | 2021 | 2022          | 2022 vs. 2021          |
| 17 | DE 84         | SCHWENK Zement                             | SCHWENK Werk Karlstadt             | Karlstadt     | 29       | 0.6  | 0.6           | -3%                    |
| 18 | DE 75         | Holcim                                     | Werk Höver                         | Sehnde        | 29       | 0.6  | 0.6           | -3%                    |
| 19 | DE 88         | HeidelbergCement                           | Zementwerk Ennigerloh              | Ennigerloh    | 29       | 0.5  | 0.5           | -4%                    |
| 20 | DE 82         | SCHWENK Zement                             | SCHWENK WGS Standort Mergelstetten | Heidenheim    | 29       | 0.5  | 0.5           | 4%                     |
| 21 | DE 110        | Märker Zement                              | Drehrohrofen 7                     | Harburg       | 29       | 0.6  | 0.5           | -17%                   |
| 22 | DE 79         | Holcim                                     | Zementwerk Beckum-Kollenbach       | Beckum        | 29       | 0.6  | 0.5           | -8%                    |
| 23 | DE 87         | Hugo Miebach Söhne KG                      | Portlandzementwerk Wittekind       | Erwitte       | 29       | 0.5  | 0.5           | 0%                     |
| 24 | DE 85         | OPTERRA Wössingen                          | Zementwerk Wössingen               | Walzbachtal   | 29       | 0.5  | 0.5           | 4%                     |
| 25 | DE 112        | Holcim                                     | Drehrohrofen Dotternhausen         | Dotternhausen | 29       | 0.5  | 0.5           | -9%                    |
| 26 | DE 111        | HeidelbergCement                           | Zementwerk Hannover                | Hannover      | 29       | 0.6  | 0.4           | -26%                   |
| 27 | DE 98         | thomas Zement                              | Drehrohrofen Werk Erwitte          | Erwitte       | 29       | 0.5  | 0.4           | -19%                   |
| 28 | DE 127        | Fels-Werke GmbH                            | Kalkwerk DSO 5-8 Seesen            | Seesen        | 30       | 0.3  | 0.3           | -4%                    |
| 29 | DE 3595       | Südzucker AG                               | Kalkofen der Zuckerfabrik Zeitz    | Zeitz         | 30       | 0.2  | 0.3           | 28%                    |
| 30 | DE 104        | Dyckerhoff                                 | Drehofen 4 Lengerich               | Lengerich     | 29       | 0.4  | 0.3           | -12%                   |
|    | Total         |                                            |                                    |               |          | 21.3 | 19.9          | -6%                    |
|    | Proportion of | of "Dirty Thirty" in the sector as a whole |                                    |               |          |      | 73%           |                        |

Source: EUTL

### Sub-sector 3 – Chemicals

In the chemicals sector,  $CO_2$  emissions are dominated by ammonia synthesis and ethylene cracking (Table 4.3). In the EU ETS emissions trading, emissions are reported on a installation basis. In 2022, the ammonia installation in Brunsbüttel was the largest individual emitter in this activity, emitting 1.1 million tons of  $CO_2$ . In second place was the ethylene cracker installation in Böhlen (the site is close to the Lippendorf lignite plant). Ordinarily, one company operates several installations at one site. Thus, at the Ludwigshafen site, BASF is responsible for a number of installations and is with six installations among the 30 largest chemical installations. In total, these six BASF installations emit 2 million tons of  $CO_2$ . In addition, other industrial installations and a number of power plants (not considered in this analysis) are operated at the site in Ludwigshafen.

In 2022, emissions generated by the synthesis of ammonia declined significantly in an order of magnitude of roughly 30%. Emission reductions are distributed very unevenly among the individual installations. In any case, they can be explained by the drop in production resulting from high natural gas prices. The highest reduction in emissions (60%) was achieved by BASF's ammonia installation 3 in Ludwigshafen. The installation manufacturing ammonia in Piesteritz reduced their emissions by 30% (in 2021, these installations were still the largest emitters in the chemical sub-sector). In Yara's ammonia installation in Brunsbüttel, on the other hand, emissions increased by 2%.



#### Table 4.3: Chemicals – 30 largest emitters

|    |           |                                   |                                       |                        |          | Emissions (million t CO <sub>2</sub> ) |      | on t CO <sub>2</sub> ) |
|----|-----------|-----------------------------------|---------------------------------------|------------------------|----------|----------------------------------------|------|------------------------|
|    | EUTL ID   | Company                           | Installation                          | Town/city              | Activity | 2021                                   | 2022 | 2022 vs. 2021          |
| 1  | DE 205626 | YARA Brunsbüttel                  | Ammoniakanlage                        | Büttel                 | 43       | 1.1                                    | 1.1  | 2%                     |
| 2  | DE 3596   | Dow Olefinverbund                 | Ethylenanlage (Cracker) Böhlen        | Böhlen                 | 42       | 1.1                                    | 1.0  | -15%                   |
| 3  | DE 202455 | SKW Stickstoffwerke Piesteritz    | Ammoniakanlage 2                      | Lutherstadt Wittenberg | 41       | 1.3                                    | 0.9  | -32%                   |
| 4  | DE 202457 | SKW Stickstoffwerke Piesteritz    | Ammoniakanlage 1                      | Lutherstadt Wittenberg | 41       | 1.2                                    | 0.9  | -30%                   |
| 5  | DE 2196   | Basell Polyolefine                | Ethylenanlage OM6 Wesseling           | Wesseling              | 42       | 0.9                                    | 0.8  | -9%                    |
| 6  | DE 201960 | BASF                              | Ammoniak-Fabrik 4                     | Ludwigshafen           | 41       | 0.9                                    | 0.8  | -12%                   |
| 7  | DE 2294   | INEOS Manufacturing Deutschland   | Kracker 4, Geb, T21 Köln              | Köln                   | 42       | 0.8                                    | 0.8  | -5%                    |
| 8  | DE 2095   | INEOS Manufacturing Deutschland   | Kracker 5, Geb, S03 Köln              | Köln                   | 42       | 0.8                                    | 0.6  | -21%                   |
| 9  | DE 2299   | BASF                              | Steamcracker 2                        | Ludwigshafen           | 42       | 0.5                                    | 0.5  | 0%                     |
| 10 | DE 2198   | Basell Polyolefine                | Petrochemische Anlage                 | Münchsmünster          | 42       | 0.4                                    | 0.4  | -2%                    |
| 11 | DE 205274 | INEOS Manufacturing Deutschland   | Ammoniak-Anlage, Geb, O 07 Köln       | Köln                   | 41       | 0.6                                    | 0.4  | -37%                   |
| 12 | DE 2197   | Basell Polyolefine                | Ethylenanlage OM4 Wesseling           | Wesseling              | 42       | 0.4                                    | 0.3  | -18%                   |
| 13 | DE 3597   | Deutsche Gasrußwerke              | Anlage zur Herstellung von Furnaceruß | Dortmund               | 37       | 0.3                                    | 0.3  | -1%                    |
| 14 | DE 206057 | Linde Gas Produktionsgesellschaft | Werk 939, Leuna, Unit 824             | Leuna                  | 43       | 0.2                                    | 0.3  | 71%                    |
| 15 | DE 201962 | BASF                              | Ammoniak-Fabrik 3                     | Ludwigshafen           | 41       | 0.7                                    | 0.3  | -60%                   |
| 16 | DE 3398   | Orion Engineered Carbons          | Furnacerußanlage                      | Köln                   | 37       | 0.3                                    | 0.2  | -3%                    |

|    |                                                           |                                   |                                  |                |          | Emis | ssions (million t CO <sub>2</sub> ) |               |
|----|-----------------------------------------------------------|-----------------------------------|----------------------------------|----------------|----------|------|-------------------------------------|---------------|
|    | EUTL ID                                                   | Company                           | Installation                     | Town/city      | Activity | 2021 | 2022                                | 2022 vs. 2021 |
| 17 | DE 202349                                                 | Linde Gas Produktionsgesellschaft | Leuna Sr 1,2                     | Leuna          | 43       | 0.4  | 0.2                                 | -33%          |
| 18 | DE 201896                                                 | Evonik Operations                 | Wasserstoff-Anlage               | Marl           | 43       | 0.2  | 0.2                                 | -2%           |
| 19 | DE 202439                                                 | Solvay Chemicals                  | Solvay Chemicals Gmbh            | Bernburg       | 44       | 0.2  | 0.2                                 | -4%           |
| 20 | DE 2298                                                   | BASF                              | Steamcracker 1                   | Ludwigshafen   | 42       | 0.3  | 0.2                                 | -39%          |
| 21 | DE 206021                                                 | Sasol Germany                     | Produktionskomplex Brunsbüttel   | Brunsbüttel    | 42       | 0.2  | 0.2                                 | -7%           |
| 22 | DE 201955                                                 | BASF                              | Wasserstoff-Anlage               | Ludwigshafen   | 43       | 0.3  | 0.2                                 | -48%          |
| 23 | DE 201954                                                 | BASF                              | Synthesegasanlage-Ab_2013        | Ludwigshafen   | 43       | 0.2  | 0.2                                 | 2%            |
| 24 | DE 205571                                                 | YARA                              | Salpetersäureanlagen 2.01/2.02   | Poppendorf     | 38       | 0.2  | 0.2                                 | -7%           |
| 25 | DE 203800                                                 | Solvay Chemicals                  | Soda                             | Rheinberg      | 44       | 0.1  | 0.1                                 | 0%            |
| 26 | DE 203110                                                 | Vynova Wilhelmshaven              | VCM-Anlage                       | Wilhelmshaven  | 42       | 0.1  | 0.1                                 | -4%           |
| 27 | DE 203739                                                 | Huntsman Products                 | MSA-Anlage                       | Moers          | 42       | 0.2  | 0.1                                 | -16%          |
| 28 | DE 202878                                                 | Evonik Superabsorber              | Acrylsäure-/Acrylsäuresteranlage | Marl           | 42       | 0.1  | 0.1                                 | -5%           |
| 29 | DE 204725                                                 | CIECH Soda Deutschland            | Sodawerk Staßfurt                | Staßfurt       | 44       | 0.1  | 0.1                                 | -4%           |
| 30 | DE 203444                                                 | Rain Carbon Germany GmbH          | RÜTGERS Basisaromaten            | Castrop-Rauxel | 42       | 0.1  | 0.1                                 | -17%          |
|    | Total 14.1                                                |                                   |                                  |                |          |      | 11.7                                | -17%          |
|    | Proportion of the "Dirty Thirty" in the sector as a whole |                                   |                                  |                |          |      | 83%                                 |               |

### Refineries

The refinery in Schwedt had the highest  $CO_2$  emissions in Germany. It was followed by the refineries in Scholven (Ruhr region) and Karlsruhe. Overall, only 21 ETS installations were classified as engaging in refinery activities (Table 4.4).



#### Table 4.4: Refineries – 30 largest emitters

|    |         |                                     |                                  |                              |          | Emissions (million t CO <sub>2</sub> ) |      | on t CO <sub>2</sub> ) |
|----|---------|-------------------------------------|----------------------------------|------------------------------|----------|----------------------------------------|------|------------------------|
|    | EUTL ID | Company                             | Installation                     | Town/city                    | Activity | 2021                                   | 2022 | 2022 vs. 2021          |
| 1  | DE 19   | PCK Raffinerie                      | Glocke Schwedt                   | Schwedt                      | 21       | 3.5                                    | 3.6  | 3%                     |
| 2  | DE 4    | Ruhr Oel                            | Ruhr Oel Gmbh – Werk Scholven    | Gelsenkirchen                | 21       | 3.0                                    | 3.1  | 2%                     |
| 3  | DE 11   | MiRO Mineraloelraffinerie Oberrhein | Werk 1 Und Werk 2 Karlsruhe      | Karlsruhe                    | 21       | 2.5                                    | 2.6  | 6%                     |
| 4  | DE 31   | Shell Deutschland                   | Raffinerie Wesseling             | Wesseling                    | 21       | 1.8                                    | 2.0  | 12%                    |
| 5  | DE 20   | TotalEnergies                       | Mineralölraffinerie Leuna        | Spergau                      | 21       | 1.6                                    | 1.9  | 19%                    |
| 6  | DE 32   | Shell Deutschland                   | Raffinerie Godorf                | Köln                         | 21       | 1.4                                    | 1.4  | -2%                    |
| 7  | DE 3    | Ruhr Oel                            | Ruhr Oel Gmbh – Werk Horst       | Gelsenkirchen                | 21       | 1.0                                    | 1.1  | 9%                     |
| 8  | DE 16   | BP Europa                           | Raffinerie Lingen                | Lingen (Ems)                 | 21       | 1.1                                    | 1.1  | 1%                     |
| 9  | DE 7    | BAYERNOIL Raffineriegesellschaft    | Standort Neustadt                | Neustadt                     | 21       | 0.9                                    | 1.0  | 18%                    |
| 10 | DE 10   | Raffinerie Heide                    | Raffinerie Heide                 | Hemmingstedt                 | 21       | 0.9                                    | 1.0  | 6%                     |
| 11 | DE 5    | OMV Deutschland Operations          | Mineralölverarbeitung Burghausen | Burghausen                   | 21       | 1.1                                    | 1.0  | -13%                   |
| 12 | DE 28   | HOLBORN Europa Raffinerie           | Raffinerie Hamburg               | Hamburg                      | 21       | 0.7                                    | 0.8  | 3%                     |
| 13 | DE 1    | Gunvor Raffinerie Ingolstadt        | Raffinerie Ingolstadt            | Ingolstadt                   | 21       | 0.7                                    | 0.7  | 4%                     |
| 14 | DE 978  | ROMONTA                             | Schmierstoffraffinerie Amsdorf   | Seegebiet<br>Mansfelder Land | 21       | 0.4                                    | 0.4  | -3%                    |
| 15 | DE 9    | BAYERNOIL Raffineriegesellschaft    | Standort Vohburg                 | Vohburg                      | 21       | 0.4                                    | 0.4  | 7%                     |

|    |                                                           |                                               |                                              |                  |          | Emissions (million t CO <sub>2</sub> ) |      |               |
|----|-----------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------|----------|----------------------------------------|------|---------------|
|    | EUTL ID                                                   | Company                                       | Installation                                 | Town/city        | Activity | 2021                                   | 2022 | 2022 vs. 2021 |
| 16 | DE 13                                                     | H&R Chemisch-Pharmazeutische<br>Spezialitäten | Raffinerie Salzbergen                        | Salzbergen       | 21       | 0.1                                    | 0.1  | 11%           |
| 17 | DE 33                                                     | H&R Ölwerke Schindler                         | Schmierstoffraffinerie Neuhof                | Hamburg          | 21       | 0.1                                    | 0.1  | -18%          |
| 18 | DE 14                                                     | Nynas                                         | Raffinerie Hamburg                           | Hamburg          | 21       | 0.1                                    | 0.1  | -60%          |
| 19 | DE 212260                                                 | HES Wilhelmshaven Tank Terminal               | LSFO-Anlage HES Wilhelmshaven                | Wilhelmshaven    | 21       | 0.1                                    | 0.0  | -35%          |
| 20 | DE 6                                                      | TotalEnergies Bitumen Deutschland             | Destillation und Nebenanlagen<br>Brunsbüttel | Brunsbüttel      | 21       | 0.0                                    | 0.0  | -3%           |
| 21 | DE 37                                                     | AVISTA OIL Deutschland                        | AVISTA OIL Deutschland Gmbh                  | Uetze-Dollbergen | 21       | 0.0                                    | 0.0  | -15%          |
|    | Total 21.4                                                |                                               |                                              |                  |          | 22.3                                   | 4%   |               |
|    | Proportion of the "Dirty Thirty" in the sector as a whole |                                               |                                              |                  |          | 100%                                   |      |               |

Source: EUTL



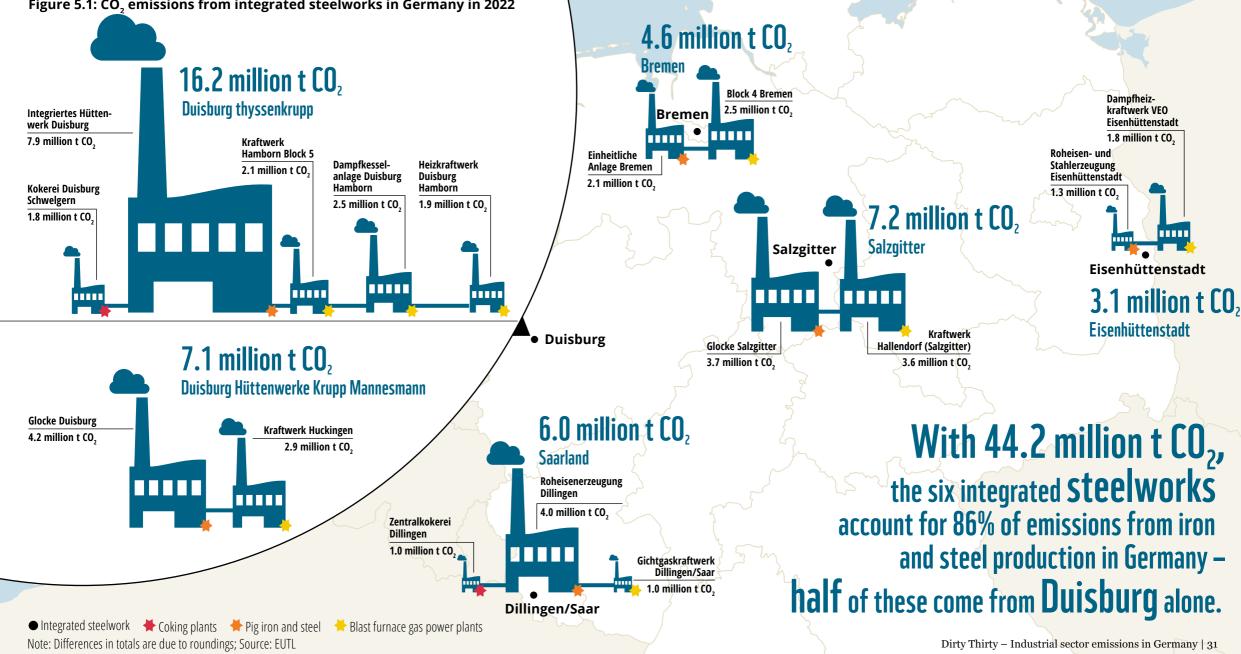

### **5** Detailed analysis of iron and steel

Table 5.1 shows the six integrated steelworks in Germany. In each case, the installations with emissions in excess of more than one million tons of  $CO_2$  are shown.

Duisburg is home to two large integrated steelworks.. They emit more than half the  $CO_2$  emissions of all integrated steelworks. Of these emissions, the thyssenkrupp site accounts for 16 million tons of  $CO_2$  and the Hüttenwerke Krupp Mannesmann (HKM) site accounts for 7 million tons of  $CO_2$ .

In the blast furnace process, blast furnace gases are emitted as a by-product. Blast furnace gases consist primarily of carbon dioxide and carbon monoxide. Some of these blast furnace gases are consumed by the blast furnace (e.g. in the hot blast stoves) and some are transferred to other installations (coking plants, electricity generation plants). In the case of the blast furnace gases that are transferred to other installations, the emissions are only reported as such in the blast furnace gas power plant because they are only released into the air from the power plant. This also applies to the proportion of CO<sub>2</sub> in the blast furnace gases that have already developed in the blast furnace. In Germany, blast furnace gas power plants are recorded as stand-alone plants in the ETS. The blast furnace gas power plants report their emissions under activity 20, while the blast furnaces report their emissions under activity 24. Among the two smallest integrated steelworks in Bremen and Eisenhüttenstadt, more than half the emissions are attributed to the blast furnace gas power plant. These sites do not have their own coking plant at the same site. The proportion of blast furnace gas power plant emissions is therefore somewhat higher here. Coking plants are operated at the remaining sites. At HKM and in Salzgitter, the coking plants are part of the integrated steelworks and are not reported separately.





#### Table 5.1: Integrated steelworks in Germany

| EUTL ID     | Installation                       | Activity | Verified emissions 2022 (million t CO <sub>2</sub> ) |
|-------------|------------------------------------|----------|------------------------------------------------------|
| Duisburg th | yssenkrupp                         |          | 16.2                                                 |
| DE 69       | Integriertes Hüttenwerk Duisburg   | 24       | 7.9                                                  |
| DE 1415     | Dampfkesselanlage Duisburg Hamborn | 20       | 2.5                                                  |
| DE 1850     | Kraftwerk Hamborn Block 5          | 20       | 2.1                                                  |
| DE 1411     | Heizkraftwerk Duisburg Hamborn     | 20       | 1.9                                                  |
| DE 65       | Kokerei Duisburg Schwelgern        | 22       | 1.8                                                  |
| Salzgitter  |                                    |          | 7.2                                                  |
| DE 43       | Glocke Salzgitter                  | 24       | 3.7                                                  |
| DE 1132     | Kraftwerk Hallendorf               | 20       | 3.6                                                  |
| Duisburg H  | üttenwerke Krupp Mannesmann        |          | 7.1                                                  |
| DE 53       | Glocke Duisburg                    | 24       | 4.2                                                  |
| DE 1486     | Kraftwerk Huckingen                | 20       | 2.9                                                  |
| Saarland    |                                    |          | 6.0                                                  |
| DE 52       | Roheisenerzeugung Dillingen/Saar   | 24       | 4.0                                                  |
| DE 4137     | Gichtgaskraftwerk Dillingen/Saar   | 20       | 1.0                                                  |
| DE 49       | Zentralkokerei Dillingen/Saar      | 22       | 1.0                                                  |

| EUTL ID     | Installation                 | Activity | Verified emissions 2022 (million t CO <sub>2</sub> ) |
|-------------|------------------------------|----------|------------------------------------------------------|
| Bremen      |                              |          | 4.6                                                  |
| DE 1228     | Block 4 Bremen               | 20       | 2.5                                                  |
| DE 60       | Einheitliche Anlage Bremen   | 24       | 2.1                                                  |
| Eisenhütter | nstadt                       |          | 3.1                                                  |
| DE 1386     | Dampfheizkraftwerk VEO       | 20       | 1.8                                                  |
| DE 70       | Roheisen- und Stahlerzeugung | 24       | 1.3                                                  |
| Total       |                              |          | 44.2                                                 |

Note: Differences in totals are due to rounding Source: EUTL



To find out more about WWF, see our app. Download now!





Android

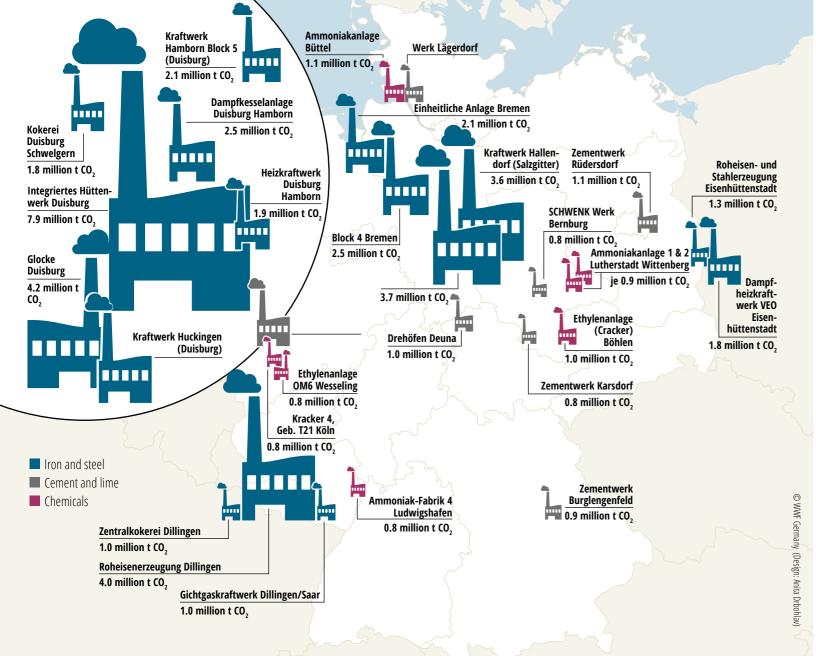
iOS



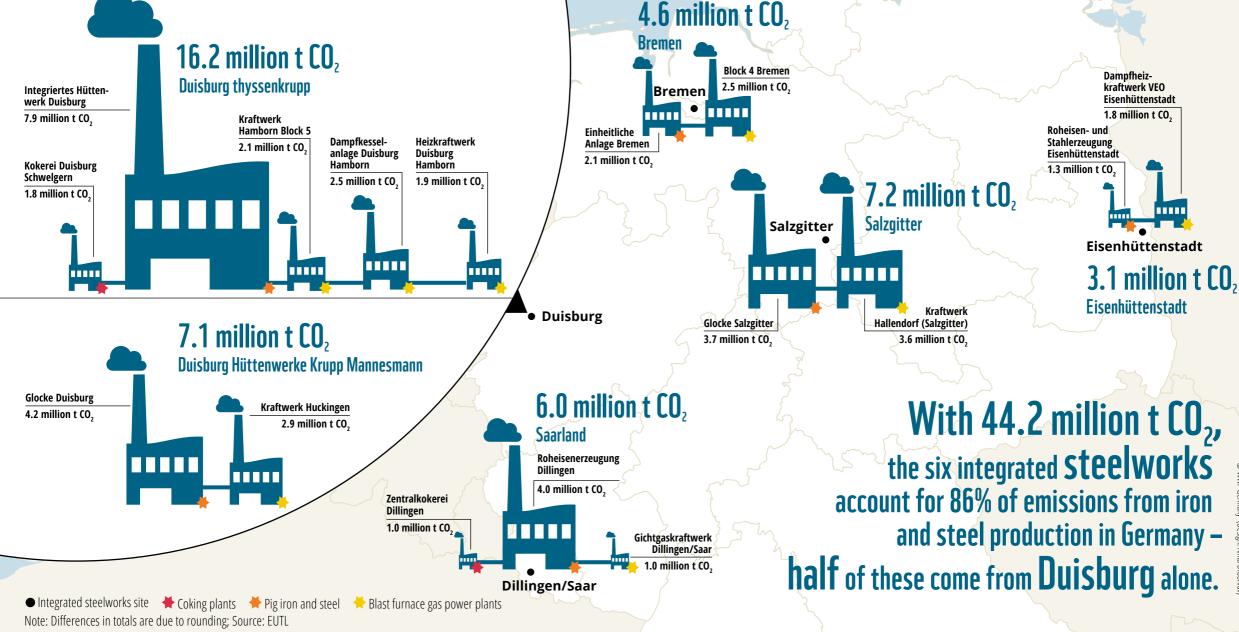
Can also be accessed via your browser.








WWF Germany Reinhardtstraße 18 | 10117 Berlin | Germany Tel.: +49 30 311777-700 info@wwf.de | wwf.de




To stop the degradation of the planet's natural environment and to build a future in which humans live in harmony with nature.

### The 30 largest emitters in industry





