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What is satellite remote sensing?
Remote sensing refers to the process of acquiring information about an object without 
coming into direct contact with it. Your vision could be considered one form of remote 
sensing because you are constantly acquiring information about many things in your 
environment without coming into contact with them! Satellite remote sensing refers to 
the acquisition of information via satellite-mounted sensors that measure the intensity 
of radiation in a particular range of the electromagnetic spectrum. Some of these sensors 
measure visible light or near-infrared radiation (multi- and hyperspectral remote 
sensing, LiDAR), whereas others measure microwave radiation (radar). This information 
is delivered in scenes (or images) which provide snapshots of a particular area of the 
Earth’s surface from above. Satellite remote sensing allows monitoring of many aspects 
of the Earth system, including oceans, land surface and cryosphere. See Chapter 2 for an 
overview of the different types of satellite remote sensing.

What is the difference between radar and multispectral satellite remote 
sensing, and why does it matter?
Multispectral remote sensors measure radiance in a small number of well-defined ranges 
of wavelengths (“spectral bands”). They are passive sensors, meaning they rely on an 
external source of energy (e.g. the sun or artificial light), and record the radiation reflected 
by the Earth’s surface to produce an image. Radar sensors, by contrast, are active sensors, 
which emit energy in the microwave part of the electromagnetic spectrum, and measure 
the amount of energy reflected back at them. Multispectral and radar sensors record 
different characteristics of the Earth’s surface: multispectral sensors generally respond to 
reflected light or colour, or chemical composition and temperature, whereas radar sensors 
respond to moisture content, orientation, surfaces and volume of objects in their field of 
view. Importantly, multispectral sensors cannot “see” through (penetrate) clouds, whereas 
radar sensors can. See Chapter 2 for a short introduction to multispectral and radar 
remote sensors, and Chapter 3 for a description of currently available multispectral and 
radar satellite remote sensing data.

What kind of satellite remote sensing data exist?
There are a large number of Earth-observing satellites currently in orbit, all of which carry 
multispectral or radar sensors (new satellites carrying LiDAR and hyperspectral sensors 
should be launched soon, see Chapter 6). Satellite sensors vary in the spatial resolution 
of the data they collect (from kilometre to sub-meter), the (overpass) frequency with which 
they collect data at a particular location (from monthly to daily), as well as the spectral 
characteristics (number of spectral bands and wavelength width for multispectral sensors; 
wavelength and polarisation modes for radar; see Chapter 2). Many of the organizations 
that own or operate spaceborne sensors provide open-access data, though some (especially 
those with higher spatial resolution) sell their data commercially. In addition to the “raw” 
satellite remote sensing data, a range of derived data products exist, including vegetation 
indices, land cover and fire maps, among others. Chapter 3 provides an overview of the 
most commonly used satellite remote sensing data and derived products.

SATELLITE REMOTE SENSING FAQ 
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How can satellite remote sensing be useful in conservation?
Satellite remote sensing has become a standard tool in conservation science and practice 
for supporting large-scale monitoring of the extent and condition of ecosystems and 
habitats (see Chapters 5.1 and 5.2), as well as detecting threats to biodiversity (see 
Chapter 5.3) across land and marine biomes. Satellite remote sensing possesses several 
attributes that makes the approach particularly advantageous. First, spatial coverage 
is nearly continuous across large extents, and the data are of relatively high spatial 
resolution. Second, repeat ”snapshots” of the same geographic location produce multiple 
measures over time, thereby allowing time series analyses. Such spatially continuous 
time series data with potentially high spatial resolution allows trends in biodiversity to be 
detected at large scales, supporting global biodiversity monitoring initiatives and helping 
nations meet their reporting requirements. Spaceborne sensors can also be useful at more 
local scales, e.g. to help characterise changes in vegetation types or structure, to map 
roads or houses, or to detect individual species and organisms (see Chapter 5.4).

Is it possible to detect subtle ecosystem/habitat degradation when it occurs in 
the absence of outright habitat loss, using satellite remote sensing methods?
In addition to detecting change (loss or gain) in ecosystem or habitat distribution, 
satellite remote sensing can detect changes in the structure, composition and function 
of these ecological entities (see Chapters 5.2 and 5.3), which frequently indicate 
ecosystem or habitat degradation. Examples for this include mapping small gaps in forest 
canopies, identifying changes in biomass or primary productivity (including net primary 
productivity of vegetation, or eutrophication of freshwater or coastal water bodies) and 
tracking changes in the distribution of invasive species.

Many parts of the world are persistently cloudy, blocking visible light.  
What technological and analytical methods are available to circumvent this?
Sensors acquiring information in the visible and near-infrared part of the electromagnetic 
spectrum – e.g. multispectral or Light Detection and Ranging (LiDAR) – are sensitive to 
cloud cover. In contrast, radar remote sensing can penetrate clouds. Spaceborne radar 
is for example often used – alone or in combination with multispectral imagery – to 
monitor tropical forests (see Chapter 5), where availability of multispectral satellite 
remote sensing data can be limited by cloud cover. An alternative approach is to choose 
a multispectral sensor which revisits the same geographic location frequently (e.g. 
daily). This means that the sensor has more opportunities to view cloud-free openings 
(see Chapter 3.1 for an overview of temporal resolutions of spaceborne multispectral 
sensors). Image compositing (i.e. selecting and combining cloud-free pixels across a 
longer time period such as weeks or months) can also help close data gaps.

How far back in time do satellite remote sensing datasets go?
Although coverage is not global, the Landsat mission provides multispectral imagery from 
as early as 1973, and the first civilian radar satellite, SEASAT, was launched in 1978. Earth 
observation satellites, together with the range of spectral, spatial and temporal resolutions of 
the datasets they are able to collect, rapidly increased in number after 2000. Figure 3.3  
provides an overview of the active periods of commonly used satellite remote sensors, 
including the estimated time period each sensor was active; this may vary locally because not 
all satellites (especially early satellites) have routinely acquired imagery over the entire globe.
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What is the cost of satellite remote sensing?
A large number of satellite remote sensing datasets and products are open-access, or free 
to use, including data gathered by the Landsat, MODIS and the Sentinel missions. In 
some cases, commercial satellite data can be obtained for non-commercial or research 
applications by submitting a proposal to the institution which holds the data (such as 
the DigitalGlobe Foundation, ALOS PALSAR from the Japanese Space Agency or various 
data from the European Space Agency). Some satellites, especially those with high spatial 
resolutions, are primarily provided commercially, and range in cost from $1 to $20 per 
square kilometre. The Appendix lists most of the widely used satellite remote sensing 
data sets which are free of charge.

How can I access satellite remote sensing data?
Open-access satellite remote sensing data can be downloaded from a large range of sources, 
including EarthExplorer (United States Geological Survey) and the Copernicus Open 
Access Hub (European Space Agency). Data from commercial providers is available through 
their respective websites. Download can be manual (choosing and downloading each scene 
by hand) or automated using scripts, bulk downloaders or programmed software. An 
overview of these sources is provided in Table 3.1.

What kind of uncertainty is associated with different types of satellite data 
imagery, how is it quantified, and how will this influence my analyses?
There are two key sources of uncertainty associated with satellite remote sensing imagery. 
Radiometric uncertainty comes from errors in measuring the signal (the radiation 
recorded by the sensor), whereas geometric uncertainty comes from errors in assigning a 
signal to its correct position on the Earth’s surface. Radiometric and geometric precision 
are commonly reported in user handbooks, and vary between sensors. Many aspects of 
satellite remote sensing data pre-processing (see Chapter 4.2) aim to reduce the impact 
of radiometric or geometric uncertainty on analytical outcomes.

What kind of uncertainty is associated with different types of products 
derived from satellite remote sensing (such as land cover maps), how is it 
quantified, and how does this affect comparability of different datasets?
The accuracy of satellite remote sensing products is commonly assessed by comparison 
with independent data sets, either from field observations (ground-truthing data) or 
from other remote sensing data (such as high spatial resolution imagery, e.g. from 
Google Earth). For land cover maps, accuracy is quantified by comparing predicted and 
observed land cover. There are three measures of accuracy that are commonly reported 
(all are expressed in percent): first, the overall proportion of correctly identified pixels 
(called overall accuracy); second, the user accuracy (proportion of pixels that have been 
correctly labelled with a given land cover class); third, the producer accuracy (proportion 
of pixels belonging to a given land cover class that have been correctly labelled as such). 
For continuous variables, such as vegetation cover, accuracy can be quantified e.g. via 
root mean square error, or the coefficient of determination (R2). Satellite remote sensing 
products are generated using a wide variety of methods and for different purposes, 
and their accuracy may vary depending on spatial scales, geographical location, and 
time. Where available, users should consult product handbooks and other literature for 
information about accuracy assessments, or validate products using ground-truthing data 
and standard methods for assessing statistical accuracy.

EarthExplorer  
http://earthexplorer.usgs.
gov/

Copernicus Open Access 
Hub  
https://scihub.copernicus.
eu/

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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What software do I need to analyse satellite remote sensing data?
There are many types of software with satellite imagery processing and geospatial analysis 
capabilities. The most common software packages used for image processing include 
R (with added raster and remote sensing packages), QGIS, ArcGIS, ERDAS Imagine or 
ENVI. Processing large amounts of data efficiently or automation of processing might 
require use of programming languages such as Python, with processing commands from 
GDAL or GRASS GIS (see Chapter 4.3).

How much computing power is required for analysing large satellite remote 
sensing datasets?
The size of satellite remote sensing data sets increases with the area covered and the 
spatial, temporal and spectral resolutions considered. A single scene from Sentinel 1 
corresponds to 1 GB of data and covers 10,000 km2, whereas global coverage or dense 
time series typically require terabytes of data. The exact computing power requirements 
depend on the efficiency of the processing chain, such as whether parallel processing is 
used (see Chapter 6). In cases with large data processing requirements, cloud computing 
services or platforms such as Google Earth Engine (see Box E) provide access to greater 
computing power where necessary.

What are the main classification methods used to convert raw remote-
sensing data into land cover maps?
Unsupervised and supervised image classification techniques are the two most 
common approaches to mapping land cover (see Chapters 4.3 and 5.1). Unsupervised 
classification is the simplest and quickest method, where the pixels in an image are 
separated into a pre-defined number of clusters or groups by an algorithm. The aim is to 
assign pixels with similar spectral properties to the same group; this approach is called 
unsupervised because no external information about land cover classes is provided. These 
clusters can later be assigned to different land cover classes. Supervised classification 
is when a machine learning algorithm is trained to distinguish discrete classes of land 
cover based on samples e.g. from ground-truthing data. Another increasingly commonly 
used approach for high resolution imagery is object segmentation, in which an algorithm 
identifies clusters of pixels that are more similar to each other than to the surrounding 
pixel; these clusters (or objects) can then be labelled by assigning them land cover classes.

What is the difference between raster data and vector data (such as points, 
lines or shapes) derived from satellites, and why does it matter?
Satellite data is provided in raster format, which means that it consists of a grid of 
pixels, each of which is associated with a measurement such as radiance. Pixels are 
georeferenced, which means they are associated with a location on a reference grid 
describing the Earth’s surface. By contrast, vector data are used to store geospatial 
information in point, line or polygon format. Imagery in raster format can be converted 
into vector format, and vector data can likewise be converted to raster. For instance, all 
pixels in a raster image that cover a forest can be used to create a polygon of that forest, 
or all pixels that cover a river can be used to produce a line that corresponds to this river. 
Vector data are useful for calculating area-based statistics, e.g. the mean reflectance 
within a given radius around a line, or the most common land cover class in a polygon. By 
contrast, satellite remote sensing data has to be in raster format to generate band ratios 
or vegetation indices (see Chapter 2.3), to carry out supervised and unsupervised land 
cover classifications (Chapter 4.4), and to produce true-colour images of an area.
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What are the most important things for a new user to keep in mind when 
starting to work with satellite remote sensing data for the first time?
As with all research and conservation endeavours, it is critical to have a clearly defined 
question, and identify time and budget constraints in order to select relevant imagery and 
analyses. What feature or element is the user trying to map, and what methods, software 
and hardware are available? This will greatly affect the selection of data and analytical 
technique. For instance, it might be tempting to assume that whichever satellite remote 
sensing data have the highest spatial resolution will be the most appropriate; however, if 
the aim is to map forest extent across an entire country or region, high spatial resolution 
may not be necessary, and may in fact put unnecessary strain on budget, time and 
computing resources. Some key considerations for choosing and pre-processing satellite 
remote sensing data are covered in Chapter 4.

Secondly, locating the right resources – such as available software, online software 
tutorials or user forums – will greatly simplify the process. This includes connecting with 
people working on the same kind of data, using similar software, and trying to answer 
similar questions. StackOverflow, GeoNet and OSGeo are good starting points for finding 
support and information about satellite remote sensing imagery processing and geospatial 
analysis. Groups connecting scientists and practitioners who apply satellite remote 
sensing in ecological and conservation contexts include the Remote Sensing Conservation 
Network (CRSnet) and CEOS Biodiversity.

Thirdly, it is important to remember that satellite remote sensing data is only one piece 
of the puzzle – ground-truthing data is indispensable to validate or interpret results in 
their geographic or ecological context. This means that sourcing existing or gathering new 
ground-truthing data is a key step in satellite remote sensing applications in conservation 
and ecology.

StackOverflow  
www.stackoverflow.com

GeoNet  
https://geonet.esri.com

OSGeo  
www.osgeo.org

CRSnet  
http://remote-sensing-
biodiversity.org/
networks/crsnet/

CEOS Biodiversity 
http://remote-sensing-
biodiversity.org/networks/
ceos-biodiversity/

http://www.stackoverflow.com
https://geonet.esri.com
http://www.osgeo.org
http://remote-sensing-biodiversity.org/networks/crsnet/
http://remote-sensing-biodiversity.org/networks/crsnet/
http://remote-sensing-biodiversity.org/networks/crsnet/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/


This is the first photograph of Earth ever taken from space, on 24 October 1946.  
The image shows for the first time the curvature of the earth as seen by a V2 rocket, 105 km 
above the ground. Credit:  White Sand Missile Range /Applied Physics Laboratory
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Polar bears (indicated by the yellow circle) in an SRS image with very high spatial resolution (< 1 m).  
Partial reproduction from Stapleton et al. 2014; satellite imagery printed under a CC BY license, with 
permission from DigitalGlobe ©2013.
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PREFACE
1.1 Aim of this guide
Humans are precipitating a global biodiversity crisis. Habitat loss and degradation, climate 
change, overexploitation, and invasive species threaten the survival of ecosystems and species 
worldwide (Butchart et al. 2010; Venter et al. 2016). The need for evidence-based conservation 
action has been widely recognised by conservation scientists, practitioners and policy-makers 
alike. Satellite Remote Sensing (SRS) offers a unique source of information about the biosphere, 
providing spatially explicit insights into biodiversity patterns and processes, and the threats 
and pressures they are experiencing, at multiple spatiotemporal scales. It is also a key source 
of repeated observations necessary to monitor our rapidly changing environment. As a result, 
SRS is an indispensable tool for developing and targeting evidence-based solutions, and 
monitoring their impacts. Although ecologists and conservation practitioners increasingly 
possess the technical skills required to effectively use satellite imagery, significant barriers to 
its use remain. This guide aims to familiarise prospective users in the conservation community 
with SRS technology and its applications (focusing on the two most widely used types of SRS: 
multispectral and radar), introduce terminology and principles behind SRS data and its analysis, 
support conservation practitioners in identifying where and how SRS could benefit their work, 
and give an overview of the resources (including software) needed for using SRS data. 

1.2 Structure of this guide 
The first half of this guide provides a primer on the most commonly used SRS data and 
their application in conservation science and practice. Though key terms and ideas are 
introduced primarily in Chapter 2, it is not necessary to read this guide in order, as 
a Glossary is provided. Chapter 2 introduces SRS, defining terminologies as well as 
principles behind multispectral and radar SRS. This is followed by a review of available 
SRS data, focussing on open-access datasets and data products in Chapter 3. Chapter 4 
provides guidance on how to choose appropriate SRS data, and common pre-processing 
and analysis techniques, as well as software requirements for processing and analysis.

The second half of this guide focuses on best-practice information aimed at conservation 
practitioners who wish to begin exploring and using SRS data in their work. Chapter 5  
provides a broad overview of SRS-based opportunities for mapping and monitoring 
ecosystem and habitat extent and condition, species distributions, and threats to 
biodiversity. A brief introduction to advanced SRS data types and analysis techniques, 
which are beyond the scope of this guide, is offered in Chapter 6. Chapter 7 outlines 
limitations of SRS that should be considered for SRS-based work, such as data resolution, 
availability and accessibility. Throughout this guide, there are descriptions of case 
studies illustrating how SRS data has been used to inform real-world conservation issues 
by WWF: mapping mangroves in Mozambique (Box B), degradation of palm swamp 
forest in Indonesia (Box A), and coral reefs in a marine protected area (Box C), as well 
as monitoring ecosystem functioning across the Arctic (Box D), and using Big Data to 
monitor land degradation in a transfrontier conservation complex (Box E).
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This false colour image shows an area of lowland Amazon rainforest in Guacamayo, Peru,  where 
small-scale mining is taking place. Intact forest appears green, whereas mining sites appear light 
blue and pink. Reproduction of a figure in Swenson et al. 2011, printed under a CC BY license.
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INTRODUCTION TO SATELLITE REMOTE SENSING

Remote sensing refers to the process of identifying, observing and measuring an object 
without coming into contact with it (Pettorelli et al. 2015). Remote sensing thus includes 
acoustic monitoring of the environment (Blumstein et al. 2011), but the term is commonly 
used in reference to the measurement of electromagnetic radiation. Eyes, like cameras, are 
remote sensors (see Glossary). Remote sensing is based on the principle that all objects 
interact with incident radiation: they absorb, reflect, refract or scatter it (Campbell 1996) How 
much radiation an object reflects back at a remote sensor depends on its surface properties, 
like its size, orientation and chemical composition (Jackson & Huete 1991). Simply put, a tree 
has a different reflectance signature (or spectrum) than a rock under the same environmental 
conditions (Figure 2.1). This means it is possible to distinguish the two by sampling the 
radiation they reflect. Of course, the reflectance spectrum also depends on the incident 
radiation: a tree at dusk has a very different reflectance spectrum than a tree in the midday 
sun. Additionally, objects above absolute zero emit radiation themselves (Campbell 1996), 
which depends on their temperature, i.e. hot objects can be distinguished from cold objects. 

HIGHLIGHTS
• Remote sensing is the process of identifying, observing, and measuring an object 

without coming into contact with it.

• Satellite remote sensing originated in the mid-20th century and measures 
electromagnetic radiation reflected off of objects, which is influenced by the object’s 
size, shape, orientation, temperature, and chemical composition.

• Remote sensors are characterized by their spatial, temporal, spectral, and radiometric 
resolutions.

• There are two types of remote sensors: passive and active. Passive remote sensors do 
not emit radiation but instead measure reflected, emitted, or scattered radiation from 
other sources. In contrast, active remote sensors emit radiation and then measure that 
radiation as it is reflected.

Figure 2.1. Different reflectance spectra (or curves) for different types of land cover. 
Vegetation typically has a large difference between reflectance in the red (approximately 620 – 
750 nm) and the infrared compared to other types of land cover, a property that is exploited by 
vegetation indices. Image from Anthony Beck, published under CC-BY 3.0 license (adapted).
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Figure 2.2. The spectrum of electromagnetic radiation (not to scale), and its use in 
satellite remote sensing.

Humans can see electromagnetic radiation in wavelengths between approximately 400 
nm and 750 nm, known as the visible spectrum. Remote sensors can measure radiation 
not only in the visible, but also at much larger wavelengths (infrared (700 nm – 1 mm), 
microwave (1 mm – 1 m), radio (1 m – 100,000 km)). Smaller-than-visible wavelengths 
(i.e. ultraviolet (10 nm – 400 nm)) are largely scattered by the Earth’s atmosphere, and 
are therefore not used for remote sensing (Figure 2.2; Campbell 1996).

Remote sensors can be located on the ground or deployed on aircrafts or satellites. 
Ground-based sensors range from hand-held spectrometers to camera traps (Burton et 
al. 2015) and weather radar stations. Airborne sensors are deployed on aircrafts or drones 
to gather remote sensing data with high spatial, spectral and/or temporal resolution (see 
below), but their use is normally restricted over relatively small areas. 

Spaceborne remote sensors are deployed on satellites orbiting the Earth at heights of 500 
to 800 km. A satellite earth observation mission has three basic components: a space 
segment (including the satellite, one or several sensors which measure electromagnetic 
radiation from the Earth’s surface, and any other instruments needed for its operation); 
a ground segment (the ground stations which receive the data from the satellite via 
microwave downlink, pre-process and distribute the data, and control satellite operation, 
e.g. changes in orbit); and the user segment (databases accessible for end users). SRS 
imagery was first developed in the middle of the 20th century (Campbell 1996) and – in 
addition to its use by militaries and in disaster response – is today used in geology, 
geography and the environmental sciences, to monitor weather as well as terrestrial 
and marine resources (Morain 1998). Sensors onboard satellites are able to repeatedly 
gather standardized data from all points on the Earth’s surface. This characteristic makes 
them an invaluable source of information to understand patterns and processes of the 
atmosphere, the biosphere, land surface, and the oceans, all of which fall under the 
umbrella term “Earth Observation”.
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2.1 Key concepts in remote sensing
Remote sensors are characterised by their spatial, temporal, spectral and radiometric 
resolutions (see Glossary, Figure 2.3):

• Spatial resolution refers to size of the smallest object that can be identified by a 
given sensor and corresponds to the size of an individual pixel. Spatial resolution is 
not only determined by sensor specifics, but also the height of the sensor above the 
Earth’s surface (Latty et al. 1985). A low spatial resolution corresponds to a larger 
pixel size. 

• Temporal resolution is the time between two successive images, and is given by 
the overpass frequency of a satellite (i.e. how often a satellite passes over the same 
location on the Earth’s surface) which is determined by the sensor’s orbit. Temporal 
coverage is determined by the launch and decommission dates.

• Spectral resolution is the smallest difference in wavelength that can be distinguished 
by a sensor. In the visible spectrum, this can be thought of as the number of different 
individual colours that can be detected. 

• Radiometric resolution refers to the smallest difference in the intensity of radiation 
that can be distinguished by a sensor. This is akin to the number of grey values in a 
black-and-white photograph – the more different grey values there are, the finer the 
differences that can be distinguished.

Figure 2.3. Clockwise from top left: Comparison of the footprint of three scenes from 
different multispectral spaceborne sensors; these vary in size from 100 x 100 km (Sentinel 
2 Level 1C) to 1015 x 1015 km (MODIS MOD09A1 Surface Reflectance product). Three 
satellite images acquired over the same area, by three multispectral sensors, showing the 
different level of detail captured by different spatial resolutions.



SATELLITE REMOTE SENSING  17

It should be noted that temporal resolution and spatial resolution are often negatively 
correlated – the satellites with higher overpass frequency tend to have a higher orbit, and 
lower spatial resolution. Likewise, higher temporal resolution is not associated with large 
spatial extents, as sensors with a high spatial resolution often cover a smaller footprint. 
Satellites are typically intended to provide imagery across the entire Earth’s surface, 
which is achieved by a polar orbit. In polar orbit, the satellite passes over, or near, the 
poles during each orbit as the Earth rotates. As a result, the satellite crosses the equator 
at different longitudes over time, so that it eventually canvasses all points on Earth. If 
the orbit is sun-synchronous, it means that the satellite passes over a given location on 
the Earth’s surface at the same solar time in every orbit. To achieve this, the orbit rotates 
once around the earth’s axis during one solar year. Satellites in geostationary orbits 
fly along the equator in such a way that they seem to rest above a given location on the 
Earth’s surface. These satellites have a fixed view, but their signal is easier to capture by 
ground stations because it comes from the same relative position at all times. By contrast, 
polar-orbiting satellites change their position relative to ground stations and the antennae 
which receive their signals have to track the satellite as it flies overhead.

2.2 How remote sensing works: passive and active sensors
Remote sensors can be classified into two categories: passive and active (see Figure 2.4). 
Passive remote sensors do not emit radiation themselves, but instead measure radiation 
which is reflected, emitted or scattered by an object (Campbell 1996). In SRS, the source 
for this radiation is the sun, thermal energy or other sources such as anthropogenic 
light (for sensors collecting at night). Active remote sensors, by contrast, emit radiation 
themselves, and then measure the returning signal or echo.

Figure 2.4. The difference between four major types of remote sensors: passive sensors 
(multispectral and hyperspectral) do not emit radiation themselves, but active sensors 
(LiDAR and radar) do. The passive modes are distinguished by the number of bands 
across which they measure radiance, whereas the active modes are distinguished by the 
wavelength of the radiation which they emit. Image: Astronaut photograph AS17-148-
22727 courtesy NASA Johnson Space Center Gateway to Astronaut Photography of Earth.
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Passive remote sensing 

The most common type of passive remote sensing is multispectral remote sensing. The 
key parameter measured by multispectral sensors is radiance or radiant flux, which is 
the amount of radiation reflected from a unit surface area, as detected by the sensor 
(measured in power per solid angle and unit area [W·sr−1·m−2]). This is also referred to 
as the reflectance or brightness. If the amount of radiation hitting an object is known, 
he reflectance is the proportion of the radiation that is reflected by an object, instead of 
being absorbed or transmitted. For instance, if we know the time at which an image was 
acquired, and the position of the satellite, we can work out the illumination conditions, 
and then derive reflectance. Because multispectral sensors depend on the sun as a source 
of radiation, they are not used at night, though there are some sensors which detect 
artificial light emitted from cities or infrastructure. 
Multispectral sensors measure brightness in a limited number of relatively broad bands 
(Figure 2.2). These bands are generally found in the visible and near to mid-infrared 
parts of the spectrum (“thermal” bands). Typically, some bands correspond to colours that 
humans can perceive (red (R), green (G), blue (B) bands), allowing the reconstruction of 
RGB images, which are very close to how humans perceive the environment (Figure 2.5). 
However, the exact width of each band varies from sensor to sensor. 

• Blue bands (approximately 450–495 nm) are the most sensitive to atmospheric 
scattering, and are often used to correct for optical properties of the atmosphere, such 
as haze (Kaufmann & Tanre 1992). 

• Green bands (approximately 495–570 nm) help visualize vegetation, since green 
light is strongly reflected by photosynthetic vegetation. 

• Light in the Red band (approximately 620–750 nm) is strongly absorbed by 
vegetation, and as a result, this band is often used for monitoring vegetation 
condition or health, e.g. as part of vegetation indices (Vogelmann et al. 1993; see 
Chapter 2.3). 

• Near-infrared bands (approximately 780–1400 nm) are useful for identification of 
water bodies, which strongly absorb radiation in this part of the spectrum (Ruddick et 
al. 2006; see Chapter 2.3). 

• Short to mid-infrared bands (approximately 1.4–3 µm and 3–8 µm respectively) 
are sensitive to water content (in soils, Lobell & Asner 2002, or vegetation, Tucker 
1980), including clouds (Horning 2004). 

• Thermal bands (approximately 3 µm –1 mm) are sensitive to temperature, and are 
used e.g. to detect fires, or clouds (Zhu & Woodcock 2012; see Chapter 3.3). 

Additionally, multispectral sensors often have a single brightness band with a higher 
spatial resolution referred to as the panchromatic band because it covers a much larger 
range of wavelengths than the others. This band can be used to “pansharpen” other bands, 
a process in which the brightness values of the bands with lower spatial resolution are 
substituted for those of the panchromatic band, resulting in an image with higher spatial 
resolution. Finally, some passive sensors measure radiation at much longer wavelengths 
(i.e. < 300 µm wavelength up to microwaves), which are primarily used for weather 
observations.
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Hyperspectral sensors are much like multispectral sensors, in that they passively measure 
reflectance (Pettorelli et al. 2014a). However, unlike multispectral sensors, which typically 
acquire information across a limited number of bands (typically between 4 and 12), 
hyperspectral sensors collect information across hundreds of spectral bands, splitting 
the spectrum into much narrower slices. This distinction is somewhat arbitrary but not 
unimportant as hyperspectral data allow reconstructing reflectance across a continuous 
spectrum, whereas multispectral data gives “snapshots” of reflectance at discrete points.

Active remote sensing

There are two types of active sensors: Radar (Radio Detection and Ranging) and LiDAR 
(Light Detection and Ranging). Because they emit their own radiation, they can “see” 
independently of other sources of radiation, such as the sun. Interpreting imagery from 
active sensors is less intuitive than for multispectral imagery because these sensors do not 
perceive colour per se, but rather respond to surface geometry, texture, three dimensional 
structure and water content.

Radar sensors emit radiation at long wavelengths, i.e. in the microwave or radiowave 
part of the electromagnetic spectrum. This radiation interacts with objects in its path: 
it is either transmitted (e.g. through the atmosphere), reflected, or scattered by rocks, 
vegetation, or other scatterers. The radar sensor, specifically its antenna, then receives 
information about two aspects of this returning radiation, or backscatter: 

Figure 2.5. The top row consists of three bands of Sentinel 2 imagery of coastal 
mangrove forests in Mozambique. Each band contains information about the reflectance 
of the Earth’s surface in a different segment of the visible spectrum. The images have a 
standardized grey scale (lighter colours = more reflectance). The blue band is the lightest 
overall, likely because light with short wavelengths is scattered quite strongly in the 
atmosphere (and is thus reflected back at the sensor). Water and vigorous vegetation 
(such as mangroves) have the lowest red values as most light in these wavelengths is 
absorbed instead of reflected. The red-green-blue (RGB) composite in the lower row is 
closer to how humans experience colour.
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1) The relative phase shift. As the radar sensor controls the timing of the outgoing 
radiation, it can compare the wavephase – the position of a point in time along the wave 
– of the outgoing to that of the incoming radiation. This phase shift is determined by the 
time between emission and reception of the signal, which in turn depends on the distance 
between an object and the sensor. As a result, information about the phase shift can be 
used to reconstruct a three dimensional model of the environment, e.g. a digital elevation 
model. This process is called inferometry (Hooper et al. 2004; Prati et al. 2010). 

2) The intensity. The intensity measures how much radiation returns to the sensor, 
relative to the amount emitted. In the context of microwave radiation, this is referred 
to as backscatter (rather than reflectance, which is used in the context of multispectral 
sensors). It is affected by the surface characteristics of the objects/features scattering 
the emitted signal (or “scatterers”), specifically, a) their volumetric distribution (the 
size and arrangement of scatterers in space), and b) their chemical composition (in 
particular, their water content; Figure 2.6). The size of an object determines how much 
of the radiation it scatters. Objects that are larger, or of a similar size compared to the 
wavelength of the radiation, scatter a lot of radiation; smaller objects do not interact as 
much with the radiation, allowing it to be transmitted further. For instance, a signal with 
a small wavelength (such as X-band; see Table 2.1) will be scattered by small objects in 
a canopy, such as leaves, whereas longer wavelengths will penetrate dense canopies, and 
even the ground (Campbell 1996), but might be scattered by large tree trunks. As a result, 
a surface will appear “smooth” in a radar image if its topography varies on a scale smaller 
than the radiation wavelength. This is also the reason why radar sensors can “see” through 
(penetrate) clouds: the water droplets contained in clouds are almost always too small to 
scatter the signal (though in rare circumstances, very large clouds have been observed in 
radar imagery). Finally, the intensity of the returning signal is higher if the scatterer has 
a high water content. Water bodies themselves reflect a large amount of radiation, and 
radar cannot penetrate water beyond a few millimeters.

Another source of information about the Earth’s surface comes from the polarization of the 
signal. Electromagnetic energy can be thought of as oscillating waves that travel forward. 
Radar sensors emit polarised electromagnetic energy, i.e. the waves all oscillate within a 
single plane. Sensors can transmit horizontally (H) or vertically (V) polarized radiation. 
Similarly, they can receive the returning signal in horizontal or vertical orientation 
(receiver polarization). 

Table 2.1. Names and wavelengths of radar bands (Moreira et al. 2013). Bands in bold 
are frequently used for environmental and ecological applications (see Figure 2.2).

NAME WAVELENGTH
P-band 120 - 60 cm

L-band 30 - 15 cm

S-band 15 - 8 cm

C-band 8 - 4 cm

X-band 4 - 2.5 cm

Ku-band 2.5 - 1.7 cm

Ka-band 1.2 - 0.75 cm
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Figure 2.6. (A) An overview of common backscatter mechanisms. Longer wavelengths 
can penetrate canopies and are scattered by tree trunks (and large branches), whilst 
shorter wavelengths are scattered within the canopy, or (for the shortest wavelengths) the 
top of the canopy. Smooth surfaces result in very low backscatter coefficients (intensity) 
because the signal is mainly directed away from the sensor, whereas surfaces at right 
angles (such as buildings on a road) produce very strong backscatter coefficients. (B) A 
radar image from the Sentinel 1B satellite acquired over London, United Kingdom, in 
2017. Note the lower backscatter from the river Thames (smooth water) and the large 
parks (relatively rough vegetation), and the higher backscatter from areas with a lot of 
buildings due to double bounce. The large buildings in Canary Wharf (bottom right) 
produce very intense backscatter, resulting in a star-like artefact.

A

B
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Altogether, there are four possible polarization modes: HH and VV (like-polarized); 
and HV and VH (cross-polarised), though not all sensors are capable of all four modes. 
Comparing the intensity of backscatter across the same area between polarization 
modes allows discriminating surfaces with different orientation and volume of scatterers 
(Lönnqvist et al. 2010). This is because the emitted signal can be depolarized by interacting 
with the objects in its path. For instance, depolarization tends to occur over rough surfaces 
or if the radar signal has penetrated the canopy or the soil before being backscattered to 
the sensor (Campbell 1996). Comparing the intensity of the signal received in different 
polarization modes helps to distinguish different types of surfaces, though inferences about 
the mechanism that caused depolarization can be difficult.

At a given distance from an object, the spatial resolution of a radar sensor is limited by the 
size of its antenna, i.e. its aperture. The maximum spatial resolution is constrained by the 
diffraction limit, which is in turn determined by the distance between the sensor and the 
object (object-sensor distance), the wavelength of emitted radiation, and the length of the 
aperture:

D=R.λ/a

Where D= diffraction limit, R= object-sensor distance, λ = wavelength and a = size of the 
antenna.

This relationship implies that, at a given wavelength and sensor-object distance, the 
spatial resolution of a radar sensor will increase with the length of its antenna. However, 
given that spaceborne sensors orbit the Earth at height of 100s of kilometers, associated 
antennae would have to be enormous to give a reasonable spatial resolution to investigate 
surface processes. For example, a satellite with a C-band sensor, emitting radiation with a 
wavelength of 6 cm, which orbits the Earth at a height of 693 km would require an antenna 
416 km in length to achieve a spatial resolution of 10 m. In fact, there is a C-band satellite 
orbiting the Earth at a height of 693 km: it corresponds to either of the twin satellites in the 
Sentinel 1 mission, recently launched by the European Space Agency (ESA). Their antennae 
are 12.3 m long, yet provide imagery with a spatial resolution of 10m – but how? The 
answer is that spaceborne satellites mimic having a sufficiently large antenna by acquiring 
lots of images as the sensor moves along the satellite flight path, or azimuth (Figure 2.7); 
this method is called Synthetic Aperture radar (SAR). The same object is thus imaged 
numerous times. Because the time when the radiation is emitted and its wavelength are 
known, it is then possible to combine these images into a composite image which shows the 
original relative position of the objects. All spaceborne radar sensors are SAR sensors, but 
we will use the broader term (radar) throughout this text.

LiDAR is another type of active remote sensor that relies on much shorter wavelengths 
than radar, i.e. laser beams. Airborne terrestrial LiDAR mostly uses infrared wavelengths 
(Nayegandhi 2006). Its sensors emit a laser beam, which is reflected when it comes into 
contact with an object. The returning signal allows measurement of the distance between 
the sensor and the object, which is then used to build a three-dimensional model of the 
environment (Dubayah & Drake 2000; Figure 2.4). Since this guide is focusing on 
multispectral and radar SRS, we refer the reader to Melin et al. (2017), who provide an 
accessible, comprehensive overview of LiDAR technology and applications.
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Figure 2.7. View geometry of a SAR satellite. The satellite moves above the nadir in 
azimuth direction, imaging a part of the Earth’s surface to its side. The size of the scene 
is limited by the swath width, and extends in azimuth and range direction. Image: NASA 
Earth Observatory image by Jesse Allen, using data from the Land Atmosphere Near real-
time Capability for EOS (LANCE), showing hardwood forest near a lake in North America.

2.3 Band ratios, vegetation indices and biophysical parameters 
derived from SRS
One way to distinguish objects with different spectral characteristics is to construct 
band ratios. For instance, field measurements of the transparency of water bodies using 
Secchi disks correlates strongly with the red/blue ratio (Kloiber et al. 2002), whereas 
short-wave infrared (SWIR) and near-infrared (NIR) or red/NIR ratios are sensitive to 
photosynthetically active vegetation (Green et al. 1998). For visual interpretation of the 
images, it can be useful to calculate these band ratios, or combinations of more than 
two bands (such as RGB images, see Figure 2.5; Horning 2004). However, it is often 
preferable to retain as much spectral information as possible for quantitative analysis, 
which is why band ratios are often used in conjunction with the original bands, rather 
than alone (see Chapter 4.4).

Vegetation indices are linear combinations of radiation captured in different bands by 
passive sensors (both multispectral and hyperspectral). They are sensitive to variation 
in vegetation “greenness”, and provide synoptic views of vegetation dynamics. The 
Normalised Difference Vegetation Index (NDVI) is the most widely used vegetation index 
(Figure 2.8). Its applications include (a) mapping ecosystem extent and condition; 
(b) modelling species distributions; and (c) informing conservation in practice, from 
monitoring protected areas to supporting future conservation planning (Pettorelli 2013). 
The NDVI is calculated from the red (R) and the near-infrared (NIR) band as:

NDVI = (NIR - R) / (NIR + R)
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This is based on the observation that photosynthetically active vegetation strongly absorbs 
red light and reflects near-infrared radiation. A closed canopy that is photosynthetically 
active will produce NDVI values close to 1, whereas areas with fewer (or less vigorous) 
vegetation will produce lower NDVI values. Water reflects little red and near-infrared 
radiation, resulting in NDVI values close to 0.

Passive sensors are sensitive to atmospheric constituents, such as gasses, water vapour 
or aerosols, and these consequently have a strong influence on measured vegetation 
indices (Pettorelli 2013). To address this sensitivity, the Enhanced Vegetation Index (EVI) 
was developed from the NDVI, using the blue band to correct atmospheric influences 
(Huete et al. 2002). EVI has been shown to be correlated with photosynthesis and 
plant transpiration (Huete et al. 2010), and is expected to be more sensitive to changes 
in vegetation at high biomass than the NDVI (Huete et al. 2002, 2010). However, this 
vegetation index is very sensitive to the atmospheric correction of the blue band. This 
means that if there is a lot of haze in the imagery, the EVI might not provide reliable 
information about the vegetation.

There have also been attempts to correct for effects of soil reflectance on the NDVI, which 
are pronounced when vegetation is scarce. The Soil-Adjusted Vegetation Index (SAVI) 
proposes to correct the NDVI by a factor L in the denominator. This factor varies between 
1 (for sparse vegetation) to 0 (for high density vegetation); SAVI is equivalent to NDVI 
in the latter case. However, it can be difficult to estimate the effects of soil background 
reflectance on the NDVI to identify an appropriate correction factor (Pettorelli 2013). 
Lastly, the Normalised Water Difference Index is calculated like the NDVI, but instead of 

Figure 2.8. NDVI derived from Landsat 8 in a savannah landscape during the dry 
season. The (relatively) lush vegetation around the river running diagonally across the 
image has higher NDVI values (indicated by darker NDVI) then the rest of the savannah. 
Water has an NDVI of 0, so pools of water appear white. Image: Landsat 8 (United States 
Geological Survey), © 2017 DigitalGlobe & Microsoft Corporation.
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the red band, a shortwave infrared band is used; this index is sensitive to vegetation water 
content, and is thus useful in monitoring vegetation health or to delineate open water 
features (Gao 1996; Xu 2006; Tripathi et al. 2013).

Similar to NDVI and NDVI-related vegetation indices, tasselled cap indices allow 
characterising vegetation cover. Tasselled cap indices are linear combinations of 
multispectral bands using pre-defined coefficients, which yield three parameters: 
greenness, brightness, and wetness. The coefficients needed to calculate tasselled caps 
vary between sensors, and have to be derived empirically and vary by sensor (Crist & 
Cicone 1984; Huang et al. 2002; Baig et al. 2014; Rocchini et al. 2016).

Apart from vegetation indices, biophysical parameters such as Leaf Area Index (LAI; De 
Kauwe et al. 2011) or chlorophyll-α concentration (Hu et al. 2012) can be derived from 
SRS. Unlike vegetation indices, which either do not have units (e.g. NDVI) or units of 
radiance or reflectance (e.g. Green Vegetation Index, Tucker 1979), these parameters 
have different units from the underlying SRS data (e.g. [m2 m-2] for LAI). Many of these 
parameters are being routinely produced because they are Essential Climate Variables, 
which form the basis for global climate observations (GCOS 2010). However, they are 
also useful for characterising ecosystem and habitat properties. For instance, SRS-derived 
LAI can be used as a proxy for ecosystem structure (Morton et al. 2014) and primary 
productivity (Asner et al. 2003). Chlorophyll-α concentration is useful for monitoring 
marine primary productivity and ecosystem condition of coastal and marine waters 
(Gohin et al. 2008).
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Global Forest Change product (v 1.3), showing areas of forest loss between 2000 and 2015 
in red over a Landsat composite image from ca. 2014 of the Congo (Source: Hansen/UMD/
Google/USGS/NASA), Creative Commons Attribution 4.0 International License
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WHAT SATELLITE IMAGERY IS CURRENTLY AVAILABLE?

The sky is home to many satellites. The Earth Observations Portal’s Satellite Missions Database 
lists hundreds, the oldest of which were launched as far back as 1959. However, the number 
of satellites which collect data commonly used in ecology or conservation is much smaller. 
This chapter gives a short overview of these satellites and the data they provide, focusing on 
satellites equipped with multispectral (Chapter 3.1) and radar sensors (Chapter 3.2). The 
Appendix provides a comprehensive list of these satellites, including their respective sensor 
specifications, spatio-temporal resolution and coverage, and also details how to access the 
data they collect, imagery costs, and examples of applications. This section provides examples 
of open-access products derived from raw SRS data, including vegetation indices, fire products 
and land cover maps; these are also summarised in Chapter 3.3. 

There are about as many ways to access SRS data as there are types of SRS data. Whereas the 
Appendix provides a single point of access for each type of data or product, Table 3.1 gives a 
short, non-exhaustive overview of the most common SRS data hubs, for both open access and 
commercial SRS data and products. These can be useful starting points for exploring the types 
of SRS data available for an area of interest. Many of these sources provide additional geospatial 
data, such as digital elevation models (DEMs) or aerial imagery. Most of the open-access data 
hubs require the user to register, and download scenes manually, which can be time-consuming 
and cumbersome when many SRS images are required. In this case, downloading open-access 
SRS imagery can be automatized using batch scripts, or bulk downloaders, which also facilitates 
setting the desired data parameters (e.g. spatial extent, time period). 

3.1 Multispectral SRS data
Open-access multispectral data are probably the most widely used type of satellite data 
for environmental and ecological applications, especially when dealing with large spatial 
scales (Hansen & Loveland 2012). The United States Geological Survey’s (USGS) Landsat 
archive provides imagery of the Earth’s surface at moderate spatial resolution (30 m) 
going back to 1972 (Wulder et al. 2012a). Landsat imagery has been open access since 
2008 (Woodcock et al. 2008), arguably resulting in the remarkable expansion of SRS 

Observation Portal  
https://directory.eoportal.
org/web/eoportal/
satellite-missions

HIGHLIGHTS
• There is a wide variety of multispectral low (kilometres) to high (< 30 m) resolution 

open-access satellite remotely sensed data, with some imagery available as far back 
as 1972.

• However, satellite data with very high spatial (< 5 m) resolutions typically must be 
purchased from commercial providers.

• Like multispectral data, radar data are available across a wide range of resolutions. 
Unlike multispectral data however, radar sensors have a much lower spectral 
resolution, emitting and measuring radiation in a single wavelength.

• An alternative to processing raw data collected by remote sensors is to instead 
use one of the many derived products, such as vegetation indices (e.g. Normalized 
Difference Vegetation Index), biophysical parameters (e.g. Leaf Area Index), and 
land cover (e.g.CORINE Land Cover). Whilst these derived products are readily 
accessible to non-experts, that they aren’t tailored to specific contexts may limit their 
applicability in some cases.

https://directory.eoportal.org/web/eoportal/satellite-missions
https://directory.eoportal.org/web/eoportal/satellite-missions
https://directory.eoportal.org/web/eoportal/satellite-missions


SATELLITE REMOTE SENSING  28

data use for environmental applications (Wulder et al. 2012a). Multispectral SRS has 
thus far informed conservation science and practice in a large number of ways – ranging 
from ecosystem mapping (Cohen & Goward 2004), monitoring ecosystem condition 
(Pasquarella et al. 2016), to modelling species distributions (Shirley et al. 2013). There 
have been eight Landsat satellites in total, of which two (Landsat 7 ETM+ and Landsat 8 
OLI/TIRS) are currently in orbit. Landsat 7 and 8 each have a panchromatic band, which 
allows pan-sharpening the other bands to increase their spatial resolution to 15 m (see 
Glossary), as well as a higher number of bands than their previous incarnations (Young 
et al. 2017). In May 2003, Landsat 7’s Scan Line Corrector failed, which has resulted in 
strips of lost data, affecting about 22% of each scene (Loveland & Dwyer 2012; Figure 3.1).  
Several gap filling methods have been developed since, based on spatial or temporal 
interpolation, or by using imagery from another satellite (e.g. Landsat 5 or MODIS). The 
USGS does not currently produce a gap-filled version of Landsat 7 (Zhang et al. 2007; Roy 
et al. 2008b).

MODIS data have a lower spatial resolution than Landsat (between 250 and 5,600 m, 
depending on the band and the type of pre-processing applied; Figure 3.2), but much 
higher temporal and spectral resolutions, providing daily images of every point on the 
Earth’s surface across 36 bands. As a result of this, MODIS is often used for time series 
analysis, e.g. many repeated images to capture information on vegetation phenology 
(Pennec et al. 2011). It is also a key source of cloud-free SRS-derived products such as 
the NDVI (Landmann & Dubovyk 2014), biophysical parameters such as the LAI (Zhu et 
al. 2013), as well as maps of active fires (Oom & Pereira 2012; Giglio et al. 2016), burned 
areas (Roy et al. 2008a) and land cover (Friedl et al. 2010; Klein et al. 2012).

Figure 3.1. The Scan Line Corrector of Landsat 7 failure, resulting in strips of data 
gaps in all imagery collected after May 31, 2003. This figure shows the same scene, from 
Landsat 8 (top row) and Landsat 7 (below), which has the characteristic “stripes”.
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Figure 3.2. Comparison of band widths of spaceborne multispectral sensors and one 
hyperspectral sensor, Hyperion. In contrast to the multispectral sensors (which each have 
at most a few dozen bands), Hyperion had 220 narrow bands between 357 and 2576 nm 
(its satellite, EO-1, was decommissioned in April 2017). Each rectangle corresponds to 
a band, and its width is approximately proportional to the range of wavelengths that it 
covers. The numbers are the band designations, which vary between sensors. For instance, 
the Landsat 8 sensor has one green band called Band 3, whereas MODIS has several green 
bands (Bands 4, 11 and 12). Bands are shifted vertically if they overlap.

SRS imagery with similarly high temporal resolution (daily) has been provided by the 
sensor AVHRR since 1979, but at lower spatial and spectral resolutions (AVHRR has 
a spatial resolution of 1.1 km and a spectral resolution of 6 bands; Appendix). Like 
MODIS, AVHRR imagery has been an important source of information for NDVI time 
series (Beck et al. 2011), and has formed the basis for early global land cover products 
(Herold et al. 2008). The sensors ENVISAT MERIS and OrbView-2 SeaWiFS also fall in 
the category of multispectral sensors with coarse spatial resolution. Whereas ENVISAT 
MERIS imagery has been applied to investigations of primary productivity distribution, 
both in the terrestrial and the marine realms (Tüshaus et al. 2014; Palmer et al. 2015), 
SeaWiFS has been primarily used in the marine and coastal realm (Werdell et al. 2009; 
Siegel et al. 2013).

Multispectral SRS data with higher spatial resolution than Landsat, such as imagery 
from the SPOT 1-4 satellites or the RapidEye fleet (which have spatial resolutions 
between 6.5 and 10 metres, Appendix), allows mapping of finer-scale environmental 
features (Salajanu & Olson Jr. 2001; Castillo-Santiago et al. 2010). Sentinel 2, part of 
ESA’s Sentinel fleet of Earth Observation satellites, is a recent addition to the range of 
multispectral satellites providing open access data, and provides imagery with a maximum 
spatial resolution of 10 m (4 bands in the visible and near-infrared spectrum; other bands 
have a spatial resolution of 20 m and 60 m, ESA 2015; Appendix). It consists of two 



SATELLITE REMOTE SENSING  30

satellites (A and B), launched in 2015 and 2017 respectively. The satellites are in the same 
orbit, but phased 180° from each other. Whereas each twin passes a given location once 
every 10 days, the repeat frequency is 5 days over the equator when both satellites are 
considered, and the repeat frequency is even less at higher latitudes. Sentinel 2’s data is 
expected to enable the routine production of well-known biophysical parameters such 
as LAI, as well as land cover maps, at finer spatial resolutions (Drusch et al. 2012). Since 
2000, Terra ASTER has provided multispectral imagery at a similar spatial resolution as 
Sentinel 2 (15 m; Abrams 2000). Unlike Sentinel 2, however, it does not systematically 
acquire imagery at every location, but instead, ASTER has focused collections over 
protected areas, and new data can be requested, or historical imagery can be downloaded. 
This means that, although ASTER can in theory acquire imagery over each point on the 
Earth’s surface, it only does so above particular areas for each overpass. As a result, the 
coverage of ASTER SRS imagery is not continuous. 

Since the beginning of the 21st century, multispectral SRS with very high spatial 
resolution (i.e. pixel resolution < 10 m) has become available (Figure 3.3; Appendix), 
including the IKONOS, the Pléiades 1A and 1B twin satellites, QuickBird, GeoEye and 
WorldView satellites. SPOT 5-7 also fall into this category when pansharpened (see 
Glossary). Their sensors tend to have low spectral resolution (i.e. only four or five 
bands, except WorldView), but very high spatial resolution (all < 3.2 m, some < 1 m when 
pansharpened) and temporal resolution (up to daily for Pléiades and WorldView-2/3; 
Appendix). This very high temporal resolution is achieved using different means: 
WorldView satellites fly at a high altitude to increase the spatial coverage of their 
imagery, whereas the Pléiades twin satellites are phased at 180° to each other. They are 
unique among existing satellites in providing imagery capable of detecting single, large 
animals (this is reviewed in more details in Chapter 5.4). This imagery is available from 
commercial providers, with costs typically around $20 km-2 with a minimum purchase of 
25 km2 (Marvin et al. 2016).

Figure 3.3. Timeline of satellite missions.
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3.2 Radar SRS data
Like multispectral sensors, radar sensors acquire data with a large range of spatial 
resolutions (0.25 m – 50 km). SRS data from the same sensor is typically available at 
different spatial resolutions, depending on acquisition mode (see Chapter 4.1), though 
few have very high spatial resolutions (exceptions are TerraSAR-X, RADARSAT-1 and 2 
and ALOS-2). Unlike multispectral SRS sensors, radar sensors have a much lower spectral 
resolution, emitting and measuring radiation in a single wavelength (or band). In the 
following section, available radar SRS will be ordered by their wavelength, from long to 
short, since this characteristic tends to guide applications (more so than spatial resolution 
considerations). There is currently no satellite carrying a P-band sensor, though ESA is 
planning to launch a P-band satellite called BIOMASS in 2021 to monitor biomass and forest 
height at a global scale (Le Toan et al. 2011). The lack of P-band earth observation mission 
is due to a relative lack of free bandwidth; P-band radar is frequently used by governments 
for military purposes and thus not widely available for civilian remote sensing. L-band 
sensors include JERS-1, ALOS PALSAR, and ALOS-2, of which only ALOS-2 is currently 
in orbit. Radar utilizing this wavelength is scattered by large surface elements such as tree 
trunks or large branches, but is relatively insensitive to smaller elements such as leaves 
(Campbell 1996). The most widely used L-band satellite is ALOS PALSAR and its follow-up 
satellite, ALOS-2, which has increased temporal and spatial resolutions. C-band sensors 
such as ERS-1 and 2, RADARSAT-2, and ENVISAT ASAR are scattered by smaller elements 
than L-band (Sinha et al. 2015). The latest addition to the fleet of C-band satellites is ESA’s 
Sentinel 1, which, like Sentinel 2, consists of twin satellites in the same orbit. Sentinel 1A 
was launched in 2014, Sentinel 1B in 2016. Together these satellites provide imagery at high 
spatial resolution (between 5 and 40 m depending on the acquisition mode), comparable to 
older C-band satellites. However, their temporal resolution is much higher: They provide 
repeated imagery of the Earth’s surface every six days over the equator (each satellite on 
its own has a repeat frequency of 12 days), and every one to three days at higher latitudes. 
Sentinel 1 thus offers opportunities for a much more detailed view of surface dynamics, 
including soil moisture retrieval at high spatial and temporal resolution (Paloscia et al. 
2013; Mattia et al. 2015). Satellites with X-band radar sensors, such as TerraSAR-X and 
TanDEM-X, collect data originating from the scattering of very small surface elements. 
These two satellites (which have virtually identical sensor specifications) fly close together, 
and acquire imagery at the same time, in the same area, but at different view angles. This 
unique property allows their imagery to be used for radargrammetry, where backscatter 
intensity from two images with different view geometries is used to reconstruct the three-
dimensional position of a target (Karjalainen et al. 2012). A digital elevation model has 
been constructed from TanDEM-X imagery, and is available for free. Other TerraSAR-X 
and TanDEM-X data can be acquired from Airbus (see Appendix).
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Table 3.1. Common sources of satellite remote sensing data.

NAME WHICH SRS DATA? WEBSITE
OPEN-ACCESS DATA

Earth Explorer Landsat 4-8, MODIS data and 
products, ASTER, AVHRR, among 
other data sets

https://earthexplorer.usgs.gov/

Copernicus Open 
Access Hub

Sentinel 1, 2, 3 https://scihub.copernicus.eu/

GloVis Landsat 4-8, Sentinel 2, ASTER, 
EO-1, among others sets

https://glovis.usgs.gov/

Google Earth Engine Landsat 4-8, MODIS data and 
products, Sentinel-1, Sentinel-2, 
DMSP-OLS, among others 

https://earthengine.google.com

QGIS Semi-Automatic 
classification plugin

Landsat 4-8; Sentinel 2; ASTER https://plugins.qgis.org/plugins/

‘MODIS’ package in R MODIS data and products https://cran.r-project.org/web/
packages/MODIS/MODIS.pdf 

COMMERCIAL DATA PROVIDERS

Digital Globe QuickBird (archive only), 
GeoEye-1, WorldView 1-3

https://www.digitalglobe.com/

Planet (subsumes Terra 
Bella, formerly SkyBox)

RapidEye, Planetscope, amongst 
other data sets

https://www.planet.com/https://
www.planet.com/terrabella/

Airbus Geostore Pléiades, TerraSAR-X, SPOT http://www.intelligence-airbusds.
com/geostore/ 

Satellite Imaging 
Corporation

WorldView 1-4, Pléiades, 
IKONOS, SPOT 6-7, TerraSAR-X, 
among other datasets

https://www.satimagingcorp.
com/ 

Appollo Mapping WorldView, Pléiades, IKONOS, 
Geo-Eye 1, SPOT, RapidEye, 
among other data sets

https://apollomapping.com/ 

3.3 SRS-derived products
Many users of SRS imagery start working with the radiance or backscatter provided by 
individual satellites, processing them across their area of interest to derive a custom 
product. This requires time, appropriate hardware, software and expertise. An alternative 
is using SRS-derived products – including vegetation indices such as the NDVI or the EVI, 
biophysical parameters such as the LAI, and fire and land cover products, produced by 
agencies such as the USGS. SRS products are intended to be used directly without more 
image processing required, and there are often a range of case studies available to illustrate 
their utility. The drawbacks are that they are often global in scope, making them less accurate 
locally. Additionally, their spatial or temporal resolution, and aspects of processing and 
validation, can make them inadequate in certain contexts. For instance, many SRS products 
are derived from MODIS data, so although their temporal resolution can be high (daily to 
monthly), their spatial resolution is 250 m or coarser (see Appendix). Land cover products 
are central to assessments of land cover change, a major driver of global biodiversity loss 
(Sala et al. 2000) and climate change (Brovkin et al. 2004). A range of global and regional 
land cover products exists. Many of these have been generated for a single time period 
(Bontemps et al. 2011), or for a limited number of time periods (e.g. the CORINE European 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://glovis.usgs.gov/
https://earthengine.google.com/
https://cran.r-project.org/web/packages/MODIS/MODIS.pdf
https://cran.r-project.org/web/packages/MODIS/MODIS.pdf
https://www.digitalglobe.com/
https://www.planet.com/
https://www.planet.com/terrabella/
https://www.planet.com/terrabella/
http://www.intelligence-airbusds.com/geostore/
http://www.intelligence-airbusds.com/geostore/
https://www.satimagingcorp.com/
https://www.satimagingcorp.com/
https://apollomapping.com/
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land cover product exists for 1985, 2000, 2006, 2012), whereas the MODIS land cover 
product is generated annually (Friedl et al. 2010). The land cover products presented in 
Table 3.2 either map several different land cover classes (such as University of Maryland 
Department of Geography Land cover), or the cover of a single land cover class, such as 
tree cover (e.g. Landsat Global Forest Change). Global land cover products have been used 
in assessments of human pressure on natural ecosystems (Sanderson et al. 2002), habitat 
fragmentation (Li et al. 2010), as well as environmental predictors for species distribution 
modelling (Fourcade et al. 2014). However, these land cover products may have low local 
accuracy and should be used with caution. Congalton et al. (2014) assessed the accuracy 
of four major global land cover products (see Table 3.2), finding that they had accuracies 
between ca. 67% and 79% (depending on how accuracy was assessed), whereas the MODIS 
500 m land cover product has a global accuracy of 75% (Friedl et al. 2010). Accuracy tends 
to be low in areas that are characterised by mixtures of land covers (such as mixed trees and 
shrubs) rather than homogenous cover (e.g. closed canopy forest or snow fields; Herold et 
al. 2008; Appendix).

Table 3.2. Accuracy of global land cover products.

NAME GLOBAL ACCURACY ASSESSED BY
International Geosphere-Biosphere 
Programme (IGBP) DISCover

66 - 78% Herold et al. 2008; Congalton 
et al. 2014

University of Maryland Land Cover 69% Herold et al. 2008; Congalton 
et al. 2014

Global Land Cover 2000 68% Herold et al. 2008; Congalton 
et al. 2014

GlobCover 2009 67% Congalton et al. 2014

MODIS 500 m land cover product 75% Friedl et al. 2010

MODIS 1 km land cover product 78% Herold et al. 2008
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Artist’s rendition of Landsat 8. The Landsat mission of satellites has provided 
imagery of the Earth’s surface since 1972. A key step in the mainstreaming of 
satellite remote sensing for ecological applications occurred in 2008, when the 
Landsat archives were made open-access.  
Source: NASA.
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SELECTING AND PROCESSING SRS DATA TO INFORM 
CONSERVATION

HIGHLIGHTS
• Determining which satellite remote sensing data are appropriate depends on the 

question you are seeking to answer, the features being mapped, or processes of 
interest.

• The spatial and temporal resolution of remotely sensed data should be as low as 
possible in to minimize the time and budget required for processing and analysis.

• As a rule of thumb, the spatial resolution is appropriate if the smallest feature of 
interest (ecosystem or habitat patch, animal, or patch made up of a target plant 
species) is roughly the size of, or larger than, a single pixel.

• The ability of multispectral satellite remote sensing to distinguish between different 
classes of land cover or detect changes in continuous traits (e.g. woody vegetation 
cover) depends on whether these elements have a unique spectral signature. As a 
result the choice of multispectral sensor depends on whether its bands capture the 
electromagnetic spectrum which differentiates features of interest.

• Longer wavelengths penetrate the canopy more (and sometimes even the ground) 
than do shorter wavelengths, which tend to be scattered at the top of the canopy. 
Consequently, which radar sensor is appropriate depends on whether the feature of 
interest occurs above or below the canopy.

• The radiation that is captured by a space-borne multispectral sensor is affected by 
the type of land cover, sensor characteristics, and solar (such as differences in Earth-
sun distance), atmospheric (such as haze or clouds), and topographic effects (hilly or 
rugged terrain which can create shadows), and these must be corrected for.

• Radiometric corrections adjust for mismeasurements of reflected radiation, whereas 
geometric corrections address the geographic or spatial accuracy of observations. 

• Radar imagery tends to have a “salt and pepper” effect (speckle) that is reduced 
during pre-processing and, like multispectral imagery, radar data have to be 
corrected for topographic effects.

• Common analytical techniques include the generation of statistics that capture 
spatial context (i.e. textures), extraction of information from many different bands 
(i.e. dimensionality reduction), and image classification.

SRS is a valuable tool for informing and supporting conservation, but to leverage its full 
utility, it is necessary to choose the right type of imagery and process it appropriately 
(Figure 4.1). What SRS data are “right” to answer a given question depends on the 
features or processes that are of interest. The choice of data type (e.g. multispectral vs 
radar) is primarily guided by the type of surface feature or process to be examined. 

Both multispectral and radar SRS data are available in a range of temporal or spatial 
resolutions. Guidance on how to choose between these is provided in Chapter 4.1. 
Whether and how to pre-process SRS imagery, or what type of pre-processed data to 
choose, is discussed in Chapter 4.2. Chapter 4.3 gives a short overview of SRS data 
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sources and appropriate software, and Chapter 4.4 provides an introduction to the most 
common SRS analysis techniques (including land cover classification). The choice of SRS 
data, processing protocol and software is constrained by factors that have nothing to do 
with the type of research questions being asked: time, budget, hardware resources, and 
individual expertise all shape what is and is not feasible. Where possible, the impact of 
these factors will be illustrated throughout this chapter.

4.1 Which resolution(s) are adequate?
It can be tempting to simply always choose the data with the highest spatial, temporal 
and spectral resolutions. However, even where financial constraints do not apply, data 
volume increases rapidly with spatial and/or temporal resolution. Larger areas cannot 
easily be covered by imagery with higher spatial resolution as they will require mosaicking 
of many smaller scenes. Pasher et al. (2014) estimates that complete coverage of the 
Canadian province of Ontario (ca. 1.1 million km2) using WorldView-1 imagery (ca. 50 
cm resolution) would require about 4,500 unique scenes, each 14 km x 17 km in size. 

Figure 4.1. Decision flow chart to help choose appropriate SRS data. Given the large 
range of SRS data and SRS products that are now available, and the range of possible 
applications, choosing the right data can be tricky. This flowchart is intended to give 
an overview of important factors that will affect the choice of SRS imagery for most 
applications; it does however not address the issue of ground-truthing data. 
MS-SRS: Multispectral satellite remote sensing.
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This corresponds to approximately 9 TB of data. In contrast, the corresponding area 
would be covered by about 80 Landsat 8 scenes (30 m spatial resolution), which would 
amount to approximately 130 GB. A SRS time series of the same area would obviously be a 
multiple of these respective data volumes. This means that to keep hardware and software 
requirements low and limit processing and analysis time, the spatial and temporal 
resolution should not be finer than needed. This then begs the question: what kind of 
resolution is really necessary?

Spatial resolution

As a rule of thumb, the feature of interest (ecosystem or habitat patch, or patch made up 
of a target plant species) should be at least as large as a single pixel, so that the spectral 
information contained in this pixel reflects primarily the feature of interest. Whereas 
coarse to medium spatial resolution (like that of the Landsat sensors) is appropriate 
to map large patches of forests, grasslands or wetlands, imagery with higher spatial 
resolution (i.e. < 10m) is necessary when the landscape of interest varies at a finer spatial 
scale, for instance to map hedgerows in an agricultural landscape (Betbeder et al. 2015). 
The spatial resolution of most satellite-borne sensors is too coarse to allow distinguishing 
individual plants for the most part, although plants which form large, relatively 
homogenous stands may be distinguished from surrounding vegetation. For instance, 
Everitt et al. (2008) mapped the distribution of Giant Reed (Arundo donax) with high 
accuracy when using QuickBird imagery, but had lower accuracy when using coarser 
SPOT 5 imagery. Conversely, Shapiro et al. (2015) found that mangroves could be mapped 
more accurately based on Landsat imagery than based on SRS imagery with higher spatial 
resolution (WordView-2) where “pure” classes may be more difficult to map due to noise. 
Using imagery with a very high spatial resolution for classification (compared to the size 
of the feature of interest) may require more effort, particularly when this imagery has 
more artefacts such as shadows, varied features such as roofs of houses, lawns and streets 
which make up an urban area, or individual trees or elements such as cars or tents, which 
can make the identification of consistent land cover classes and features more difficult 
(Sawaya et al. 2003). Put simply, SRS imagery has an appropriate spatial resolution when 
the smallest feature of interest is roughly the size of a single pixel.

Multispectral SRS data typically have a fixed spatial resolution, though sometimes thermal 
bands are collected at lower spatial resolution than the others. For instance, Landsat 7 and 
8’s thermal bands are acquired at 60 m and 100 m spatial resolution respectively. Many 
sensors have a panchromatic band at higher resolution, which allows pansharpening 
of lower-resolution bands (see Glossary). However, this process may introduce some 
artefacts (i.e. features in the SRS imagery which are a result of the pansharpening process, 
and do not correspond to any real features on the ground), which can lead to errors 
in subsequent analysis (e.g. land cover classification). It is therefore typically used for 
visualisation rather than analysis (Leutner & Wegmann 2016). In most cases, it is safest 
to choose multispectral SRS data based on the spatial resolution of bands in the visible or 
near-infrared spectrum. 

For radar SRS data, there often is a choice between different acquisition modes. These 
vary, broadly speaking, in swath width (i.e. the size of a single scene), and spatial 
resolution, with smaller swath width typically having higher spatial resolution. Along its 
orbit, a satellite might acquire imagery in different acquisition modes, depending on its 
intended use (see Table 4.1).
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Temporal resolution

In many cases, SRS data from a single point in time is sufficient to map the extent of an 
ecosystem (Giri et al. 2011) or the distribution of species habitat at a given point in time 
(Imam et al. 2009). In other instances, two or three time points are enough to monitor 
change in ecosystem extent over a long time period (Hansen et al. 2013). In some cases, 
however, denser time series are necessary, for instance, to characterise sub-annual 
vegetation phenology (Pettorelli et al. 2005) or monitor deforestation in near real time 
(Anderson et al. 2005).

Spectral resolution

The ability of multispectral SRS to distinguish between different classes of land cover or 
detect changes in continuous traits (e.g. woody vegetation cover) depends on whether 
these classes or traits have different spectral reflectance curves (Figure 2.1). If they do, 
the choice of multispectral sensor depends on whether its bands sample those parts of the 
spectrum where the features in question are different – which in most cases is difficult to 
know beforehand. However, there are a range of rules of thumb that can help choose the 
right spectral resolution.

Wider bands are generally more likely to be absorbed by water vapour. For instance, 
Landsat 7’s NIR band is much wider (0.77 - 0.90 μm) than Landsat 8’s (0.85 - 0.87 μm). 
In fact, Landsat 8’s NIR band was chosen after it emerged that Landsat 7’s NIR band was 
sensitive to water absorption at around 0.82 µm. This is important especially if the SRS 
data is intended for calculating vegetation indices such as the NDVI, which depend on 
accurate measurements of NIR reflectance, in which case sensors with narrow bands are 
often preferable (Elvidge & Chen 1995; Brown et al. 2006).

In areas where aerosol concentrations are expected to be high (e.g. because of smoke 
from wildfires or windblown dust), it can make sense to choose a sensor with a band 
towards the ultraviolet end of the spectrum (i.e. a blue band with very small wavelengths). 
These wavelengths are sensitive to very small aerosol particles in the atmosphere, and 
allow atmospheric correction of other spectral bands (Roy et al. 2014). In cases where 
precise cloud masking (identification and exclusion of imagery impacted by cloud cover) 
is important (e.g. for change detection), it is useful to choose a sensor with a short-wave 
infrared (SWIR) band. SWIR radiation is strongly absorbed by water, and thus sensitive 
to clouds (Zhu et al. 2015). Alternatively, thermal bands can help detect clouds accurately, 
because clouds are cooler than the Earth’s surface (Zhu & Woodcock 2012).

Table 4.1. Characteristics of different acquisition modes, illustrated using Sentinel 1. 
Reference: ESA (2013).

NAME SWATH WIDTH SPATIAL RESOLUTION COMMENTS
Stripmap 80 km 5 m x 5 m Only in exceptional cases 

(emergencies)

Intereferometric 
Wide Swath

250 km 5 m x 20 m Standard mode

Extra-Wide 
Swath

400 km 20 m x 40 m Typically acquired over sea-ice, 
polar zones, marine areas

Wave 20 km 5 m x 5 m Incomplete coverage: Acquired 
every 100km along the orbit
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Radar sensors typically only acquire information in a single, narrow microwave 
bandwidth (see Chapter 2.2); which band is appropriate in a given case depends on 
the feature of interest and the characteristics of the study area. Long-wave radar (i.e. 
L-band) is widely used to estimate forest extent and change (Almeida-Filho et al. 2009; 
Whittle et al. 2012; Thomas et al. 2014) aboveground biomass in areas where biomass 
is high, e.g. tropical forests (Morel et al. 2011), mangrove forests (Hamdan et al. 2014) 
or plantations (Baghdadi et al. 2015). However, it has also been employed in ecosystems 
with less dense vegetation, such as savannah (Mermoz et al. 2014). Radar with shorter 
wavelengths (i.e. C-band, X-band) does not penetrate the canopy as much as L-band radar 
(Sinha et al. 2015), thus its signal tends to saturate when biomass is high. As a result, 
L-band tends to be preferred for ecosystems with low biomass (Ghasemi et al. 2011). 
Because it is scattered by the top of the canopy, X-band radar is well-suited to derive 
canopy height (Karjalainen et al. 2012). In areas where canopy height is closely correlated 
to biomass (e.g. homogenous, continuous forests), X-band derived forest height has also 
been used to estimate biomass (Fatoyinbo & Simard 2013; Solberg et al. 2014). Sensors 
also vary with respect to polarization modes (see Chapter 2.2), providing single, dual 
or quad-polarization mode data. Different polarization modes can in some instances 
provide complimentary information about the Earth’s surface (Almeida-Filho et al. 2009; 
Liesenberg & Gloaguen 2012).

4.2 Which level of pre-processing is adequate? 
What type of processing is appropriate depends on the type of analysis that is planned. 
As a rule of thumb, there should be as few pre-processing steps as possible, to reduce the 
chance of introducing artefacts and errors (Young et al. 2017). Limiting pre-processing 
also saves time and computational resources, e.g. because fewer intermediate data have 
to be stored. Additionally, commercial data can be more expensive per image if more 
pre-processing options are ordered. This chapter provides an overview of common pre-
processing steps for multispectral and radar SRS data. Typically, SRS data are available 
with different levels of pre-processing, and these products are detailed where applicable.

Multispectral SRS data

The radiation that is detected by a spaceborne multispectral sensor is not only affected 
by the type of land cover, but also by sensor characteristics, solar (such as differences in 
Earth-sun distance), atmospheric (such as haze or clouds), and topographic effects (such 
as differences in illumination between North and South facing slopes; Young et al. 2017). 
These effects can be attenuated by radiometric and geometric corrections (see Figure 4.2). 
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Figure 4.2. An overview of multispectral satellite imagery processing steps.
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Raw sensor measurements are converted to radiance, i.e. the energy flux recorded by 
the sensor, using sensor-specific calibration coefficients that are part of SRS metadata. 
This at-sensor radiance is then corrected for solar effects, e.g. sun elevation angle, solar 
irradiance, and Earth-sun distance, which vary with date, time of day and latitude (Young 
et al. 2017). The resulting top-of-atmosphere (TOA) reflectance is a unitless ratio of 
radiation that is reflected by the Earth’s surface relative to the incoming radiation. TOA 
reflectance is usually the least processed data level used for ecological applications, and 
can be appropriate for analyses that use a single image from a single point in time (Young 
et al. 2017). The new Landsat Level 1 collection provides such at-sensor radiance for TM, 
ETM+ and OLI/TIRS sensors with a formal data quality hierarchy (where Tier 1 refers 
to scenes with the highest data quality). TOA reflectance that has been corrected for 
atmospheric effects (such as haze) is called surface or bottom-of-atmosphere reflectance. 
Atmospheric correction methods include dark object subtraction (Chavez 1988), based on 
the assumption that in every image there are some pixels that do not reflect any light; any 
reflection measured over these dark objects is thus attributed to atmospheric scattering or 
absorption. Because it is difficult to carry out atmospheric correction without introducing 
artefacts, the use of surface reflectance products, such as Landsat Collection 1 Higher-
Level products (see below) is recommended (Young et al. 2017; Figure 4.3).

Figure 4.3. Comparing a multispectral satellite image before (top) and after (bottom) 
atmospheric correction. Shown is part of a Landsat 8 scene (band 3; path: 180, row: 63) 
acquired on August 10 2017. The bottom image shows the effect of the LaSRC algorithm 
which corrects for atmospheric effects.
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Clouds can also be masked, if required, either by using a spectral index or by using cloud 
layers included in the SRS data (Zhu et al. 2015; Leutner & Wegmann 2016). For instance, 
all Landsat Level 1 products come with a Quality Assessment layer that flags cloud and 
cloud shadow pixel (USGS 2016) which allows a user to replace clouds with other data, 
such as from another less cloudy image. A cloud layer is part of Sentinel 2 Level 1C 
products, and is provided as a separate data product for MODIS (Platnick et al. 2014;  
ESA 2015).

When several images are being used in an analysis (e.g. a time series or several adjacent 
images), regardless of whether they represent at-sensor radiance, TOA or surface 
reflectance, it is useful to standardize the radiometric scale across all images (relative 
radiometric correction; Young et al. 2017), so that pixel values can be compared across 
images. Indeed, in cases where surface reflectance is not needed in the analysis, relative 
radiometric correction can be better at preserving relative reflectance values than applying 
atmospheric correction to each image separately (Schroeder et al. 2006). Common 
techniques for relative radiometric correction include histogram matching or methods 
based on pseudo-invariant features (Chen et al. 2005).

Both TOA and surface reflectance can be corrected for topographic effects of illumination, 
which can distort reflectance especially in rugged terrain (Shepherd & Dymond 2003; 
Vanonckelen et al. 2013; see Sola et al. 2016 for an overview of topographic correction 
methods). This is different from orthorectification, a type of geometric correction 
discussed below, which aims to correct topographic effects on pixel location. 

Geometric corrections have the aim of aligning a given SRS image to an absolute or 
relative geographic location. SRS images are typically geolocated (i.e. contain information 
about the geographic location of each pixel). An important source of geometric error is 
local topography: large differences in elevation can lead to horizontal pixel displacement. 
This can be corrected via orthorectification, in which pixels are assigned locations 
based on a digital elevation model (Tucker et al. 2004). Furthermore, images can be co-
registered (aligned with one another); though SRS data are often geolocated at sub-pixel 
accuracy (e.g. Landsat 8: Storey et al. 2014; Sentinel 2: ESA 2015), this may be necessary 
if images from different sensors or from different time periods are used. Landsat Level 1, 
and all higher levels, are both geolocated and orthorectified (with Level 1TP data having 
the highest geodetic precision, and Level 1GT or GS data having lower precision), whereas 
MODIS and Sentinel 2 Level 1B is only geolocated.

Radar SRS data

This section describes radiometric and geometric corrections of brightness information of 
radar SRS data (Figure 4.4). The phase information can be used to reconstruct a three-
dimensional surface via interferometry (Zhou et al. 2009), e.g. to map forest biomass 
(Solberg et al. 2014). This requires advanced radar processing methods beyond the scope 
of this introduction.
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Figure 4.4. An overview of radar satellite imagery processing.

Raw data acquired by the radar sensor has to be converted to brightness, in a process 
called radiometric calibration, using sensor-specific coefficients contained in the 
metadata. The resulting brightness is called beta naught, and measures the reflectivity per 
unit area in slant range (i.e. in sensor geometry; expressed in dB), meaning that the pixels 
are not square. Consequently, multi-looking and geolocation are necessary steps after 
radiometric calibration.

A key radiometric correction for radar SRS data is speckle reduction. Radar speckle 
looks like noise (“salt-and-pepper effect”), but it is not random. Instead, it results from 
the deterministic interference of the backscatter of different objects in the same pixel. 
Depending on their arrangement, their backscatter phases may coincide (reinforcing each 
other) or be shifted relative to each other (cancelling each other out). Many despeckling 
techniques exist and their respective merit is actively debated (Di Martino et al. 2014). 
A simple despeckling technique is for instance passing a median filter over an image; 
additionally, speckle is reduced during multi-looking (see below).
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Local topography not only introduces geometric effects (see below), but can also lead to 
radiometric errors because of small-scale variations in the incidence angle of the radar 
beam (Small 2011). These effects are corrected via radiometric terrain correction, which 
requires a digital elevation model (Small 2011). This correction is necessary to compare 
brightness values between images from different sensors, or between images acquired 
from different view angles.

Radar imagery has to undergo a series of geometric corrections before it can be used. 
Radar systems are side-looking, meaning that their view of the Earth’s surface is stretched 
along the axis connecting the nadir to the furthest point that falls within the footprint, the 
range (see Chapter 2). As a result, pixels are not square, but instead elongated in range 
direction (Figure 4.5). To derive square pixels, radar images are multi-looked. This 
processing step essentially averages brightness values between several adjacent parts of 
the image (or “looks”). A positive side effect is speckle reduction (see below); however, the 
spatial resolution of multilooked imagery is always lower than single look imagery.

Figure 4.5. Difference between single look, multi look and georeferenced radar imagery. 
The top image shows a radar image in sensor geometry: areas which are further away 
from the sensor appear elongated (put differently, pixels further way from the sensor 
correspond to a larger area than pixels closer to the sensor). After multilooking, the image 
is in ground geometry: each pixel in the image corresponds to an area on the ground of 
the same size; areas further away from the sensor no longer appear “stretched”. After the 
image has been georeferenced, each pixel now corresponds to a known location on the 
Earth’s surface; such images are normally displayed with North up.
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Figure 4.6. This SAR imagery from ERS-1 shows the effects of layover and 
foreshortening. The image was acquired over the Mojave Desert, and shows a mountain 
range. The top of each mountain seems to “lean” towards the SAR sensor (i.e. shifted 
across the range), and the slopes facing the satellite appear shorter than those facing 
away. © Michael Eineder, Richard Bamler (CC BY-SA 4.0).

A key step for geometric corrections is geolocation, a process by which radar imagery is 
converted from sensor to ground geometry using a reference model of the Earth’s surface 
(i.e. a reference ellipsoid, Figure 4.5). The resulting brightness values (called Sigma 
naught) measure the reflectivity per unit surface area in ground geometry, i.e. each pixel 
in the image corresponds to a pixel of the same area on the Earth’s surface (Moreira et 
al. 2013). Multilooked and geolocated radar imagery is necessary for most applications 
because they ensure than the brightness information corresponds to a known location on 
the ground.

Though geolocation reduces some of the geometric distortions of radar images, local 
topography can introduce further artefacts, such as layover and foreshortening (Figure 4.6). 
Both effects result from the view geometry of radar satellites. In layover, the top of tall 
structures (mountains or buildings) appears to be closer in range than lower structures. 
This is because the signal from the top of tall structures arrives at the sensor sooner than 
a signal backscattered from a lower structure, which (in slant geometry) looks like the tall 
structure is closer to the sensor. Foreshortening refers to slopes which face the sensor 
appearing shorter than slopes that are tilted away. Again, this happens because backscatter 
from the latter reaches the sensor later than backscatter of the former (Campbell 1996). 
These topographic effects can be corrected via orthorectification, such as the Range 
Doppler method, which requires a precise digital elevation model (Sheng & Alsdorf 2005; 
Figure 4.7). However, if the terrain is flat, orthorectification may not be necessary.
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QGIS  
http://www.qgis.org/

R  
https://www.r-project.org/

Open Source Geospatial 
Portal  
http://www.osgeo.org/
home

Stack Exchange  
https://gis.stackexchange.
com/

ESRI  
https://community.esri.
com

Google Earth Engine  
https://developers.google.
com/earth-engine/edu

Figure 4.7. A Sentinel 1 image before (left) and after (right) terrain correction. Terrain 
correction involves adjusting pixel location as well as backscatter intensity to account 
for distortions such as foreshortening. Credit left: Copernicus Sentinel data 2015. Credit 
right: ASF DAAC 2016, contains modified Copernicus Sentinel data 2015.

4.3 Resources and software for accessing and processing satellite  
imagery

After SRS data has been acquired, there is a range of open-access and proprietary software 
available for visualisation; processing and analysis (see Table 4.2). Such programmes 
typically include a Geographic Information System (GIS) component, which can also deal 
with vector data (points, lines and polygons). For open source software there are useful 
extensions for SRS processing and analysis (e.g. ‘RStoolbox’). QGIS and R have many 
tools for SRS imagery processing and analysis. R is a software environment that is used 
widely in ecology and conservation science to analyse and visualise data. Using it requires 
getting to know its syntax, but it has a lot of high-level SRS capability in packages such as 
‘raster’, ‘rgdal’ and ‘RStoolbox’. Google Earth Engine provides online cloud processing for 
many types of imagery in a simpler map interface as well as a coding platform. A popular 
commercial software package is ArcGIS from ESRI, which has a native image analysis 
window which provides fast processing, including clipping and classification tools. ESRI 
also provides image services which are streamed via the web and can be ingested directly 
into its GIS. For pre-processing Sentinel SRS data, ESA has developed dedicated, free 
software, called SNAP (which subsumes earlier, stand-alone toolboxes for Sentinel 1, 2 
and 3).

All of these packages allow (semi-)automated downloading of SRS imagery: MODIS SRS 
imagery and products can be downloaded through R, using the ‘MODIS’ package, whereas 
the Semi-Automatic Classification Plugin allows downloading Landsat 4-8, Sentinel 2 and 
ASTER data through QGIS.

There are online resources available to help carry out simple remote sensing projects, 
including forums (e.g. the Open Source Geospatial Foundation; Stack Exchange; or see 
Wegmann et al. 2016). 

Advanced users, who are interested in computational efficiency, flexibility and 
automatization, are likely going to prefer implementing GIS commands in a programming 
environment. GDAL, GRASS GIS and SAGA GIS all have a wide range of functions for SRS 
processing and analysis, and can be integrated into batch scripts (e.g. using Python).

http://www.qgis.org/
https://www.r-project.org/
http://www.osgeo.org/home
http://www.osgeo.org/home
https://gis.stackexchange.com/
https://gis.stackexchange.com/
https://community.esri.com
https://community.esri.com
https://developers.google.com/earth-engine/edu
https://developers.google.com/earth-engine/edu
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Table 4.2. Software used for pre-processing, analysing and visualising SRS data.

SOFTWARE SHORT DESCRIPTION OPEN-ACCESS?
ArcGIS GIS environment for e.g. visualisation, map-

making, pre-processing
No

eCognition Software for object-based image analysis No

ENVI Image analysis software for SRS data, e.g. 
pre-processing, land cover classification, 
photogrammetry

No

ERDAS Image analysis software for SRS data, e.g. 
pre-processing, land cover classification, 
photogrammetry

No

GDAL Library for raster and vector data formats and 
utility programmes (commands which allow SRS 
data processing)

Yes

GRASS GIS GIS environment for e.g. pre-processing, land 
cover classification, spatial modelling

Yes

IDRISI GIS environment and image processing, 
including land cover classification

No

IMPACT Portable GIS Toolbox for image processing and 
land cover mapping

Yes

QGIS GIS environment; useful for visualisation, 
map making, downloading and land cover 
classification

Yes

R Software environment for statistical computing, 
for e.g. pre-processing, land cover class, time 
series analysis

Yes

SAGA GIS GIS environment for image processing and 
spatial modelling

Yes

SNAP ESA toolbox for pre-processing Sentinel imagery Yes

Python Programming language; useful for batch 
processing large amounts of SRS data

Yes

4.4 Common SRS analysis techniques
A simple way to use SRS imagery is to perform a visual inspection (often aided by 
composite images, such as RGB, Horning 2004). Often, this is enough to identify some 
features of interest, such as forests and water bodies. Additionally, visual inspection 
of layers can yield important information about which pre-processing steps might be 
necessary – is there visible haze, or topographic distortions? However, SRS imagery 
is rich in information that is not easily apparent to ad-hoc human interpretation. In 
the following, a short overview of three ways to use this information are presented: 1) 
generating new layers taking into account spatial context (textures), 2) extracting the most 
important information from many different bands (dimensionality reduction), and 3) 
image classification techniques.
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Textures

SRS imagery provides not only information about the spectral or backscatter 
characteristics of each pixel, but also about their spatial context: what do the pixels 
around it look like? This spatial context is made evident in so-called texture layers. 
Texture layers are generated by moving a window across the image, calculating a 
particular statistic (such as mean or standard deviation) across all pixels in that window, 
and assigning this value to the focal pixel (Rocchini et al. 2016b). Texture layers can help 
discriminate between different types of land cover, both for multispectral (Wang et al. 
2004) and radar imagery (Haack & Bechdol 2000).

Dimensionality reduction

A large number of layers can be generated from original SRS bands (e.g. texture variables, 
band ratios or vegetation indices). However, much of the information contained in these 
layers may be redundant, burdening further analysis with unnecessary amounts of data. 
In these instances, dimensionality reduction can be useful – essentially “collapsing” the 
information contained in many bands into a few. Principal Component Analysis (PCA) 
allows the generation of a reduced number of layers that contain most of the information 
from the original layers (Demšar et al. 2013). Tasselled cap algorithms, similar to PCAs, 
generate three new layers from linear combinations of the original layers, corresponding 
to brightness, wetness and greenness (Huang et al. 2002). Finally, spectral unmixing 
algorithms estimate the fraction, per pixel, of a number of predefined “pure” land cover 
classes (so-called spectral endmembers); for instance, the fraction of each pixel covered in 
vegetation, soil and shadow can be estimated (Asner 2014). 

Image classification

Supervised or unsupervised land cover classification techniques are among the most 
widespread SRS image analysis techniques; they aim to assign similar pixels into classes 
or classes. Many machine learning land cover classification algorithms can assess pixel 
characteristics across a large number of bands, which can be a combination of original 
bands, band ratios, vegetation indices and/or texture variables. In supervised land cover 
classification the classification algorithm “learns” what each land cover class looks like by 
being given example locations of each class (training or calibration data), and then applies 
what it has learned to new areas. Common supervised classifiers include the Random 
Forest algorithm (Breiman 2001) or the maximum likelihood classifier (Xiuping Jia & 
Richards 1994). By contrast, unsupervised classification algorithms identify clusters of 
pixels that are similar by comparing their spectral and/or backscatter characteristics. 
These are assigned to unlabelled classes by the algorithm, and these classes are then then 
assigned to cover classes by the user. Another increasingly popular image classification 
technique is object-based image analysis (OBIA), where an image is segmented into 
groups of adjacent pixels that are more similar to each other than the surrounding pixels. 
These polygons are then be grouped into classes using spectral or pixel information like 
the classification described above, as well as texture and shape metrics of the objects 
(Blaschke 2010). Because OBIA takes into account the spectral information of each 
individual pixel, as well as its spatial context (i.e. its neighbouring pixel), it is a powerful 
technique for distinguishing discrete land cover classes. The accuracy of land cover maps 
can be assessed by comparing the predicted land cover against observed land cover, based 
on field observations or imagery with very high spatial resolution (see Olofsson et al. 
2014) for good practice recommendations about accuracy assessments.
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BOX A:  OBJECT-BASED LAND COVER CLASSIFICATION TO MAP PEAT SWAMP    
FORESTS IN SEBANGAU NATIONAL PARK
Sebangau National Park, Indonesia, covers ca. 5800 km2 and has been affected by illegal logging. 
A land cover classification was carried out to distinguish forest from non-forest areas (i.e. 
potential sites of deforestation), and to map degraded and non-degraded areas of peat swamp 
within the remaining forest. There are two main reasons why such a land cover classification 
will benefit conservation in Sebangau National Park: first, it allows identifying candidate sites 
for afforestation, and second, mapping different forest types helps pinpoint key nesting sites for 
orangutans (Pongo pygmaeus). 

To classify the land cover, an object-based image analysis was conducted. In the first step, 
adjacent pixels that were spectrally similar were clustered into discrete, contiguous objects 
(see Chapter 4.4). These objects were then labelled (e.g. forest, water, etc.) based on expert 
knowledge of the area and ancillary data such as topographic maps. The basis of the Sebangau 
National Park land cover classification was RapidEye imagery from 2009 and 2011. RapidEye 
is a multispectral sensor with 5 bands and a very high spatial resolution (6.5 m). The imagery 
was first atmospherically corrected using ATCOR-2, a type of software for atmospheric and 
topographic corrections of SRS imagery (Richter & Schläpfer 2016), and orthorectified using 
Erdas’ Autosync algorithm. Then, a spectral mixture analysis was carried out, which produces 
three new layers, namely, the proportion of green vegetation, non-photosynthetically active 
vegetation and soil per pixel (per Asner et al. 2005). 

These layers were then used to generate objects in eCognition. The land cover class of each object 
was identified via a rule set based on expert knowledge of the region as well as additional spectral 
information from Landsat. For instance, Landsat imagery helped discriminate between areas 
of palm swamp forest with different heights. Finally, visual post-processing of the maps was 
carried out to minimize errors, especially in the degradation classes. The resulting map (Figure 
A) shows relatively large areas of highly degraded palm swamp forest throughout the National 
Park, especially towards the West.

Figure A. Land cover classification based on object-based image analysis of high resolution, 
multispectral SRS imagery from RapidEye. The “no data” gaps are due to cloud cover.
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BOX B: SUPERVISED LAND COVER CLASSIFICATION TO MAP MOZAMBIQUE’S   
 MANGROVES
Mangrove forests provide habitat for a diverse fauna and flora (Manson et al. 
2005), and support essential ecosystem processes, functions and services such 
as carbon storage (Donato et al. 2011) and coastal protection (Dahdouh-Guebas 
et al. 2005). To support the conservation of Mozambique’s mangroves, WWF-
Germany and WWF-Mozambique estimated the extent of mangrove forests along 
the Indian Ocean coast in 2016. Satellite remote sensing data are well suited 
to national ecosystem mapping because they provide continuous wall-to-wall 
coverage. Multispectral satellite remote sensing data are widely used for forest 
mapping at large scales (Hansen & Loveland 2012) including mangrove forests 
(Giri et al. 2011). In this case, all analyses were carried out in Google Earth Engine, 
which provides free cloud computing services, as well as access to a large range of 
accessible satellite remote sensing data and products. The use of cloud computing 
facilitates processing of relatively large datasets without the need to invest in costly 
hardware or software.

The underlying satellite remote sensing data were provided by the Sentinel 
2A satellite, launched by the European Space Agency in 2015, which carries a 
multispectral sensor that provides imagery with a spatial resolution of 10 m and 
overpass frequency of about once every two weeks, and is similar to Landsat 8, but 
with additional bands in the near-infrared spectrum. All Level-1C scenes covering 
the study area acquired in 2016 were accessed via Google Earth Engine. Level-1C 
data have been corrected for solar and sensor effects (i.e. it corresponds to top-
of-atmosphere reflectance) and are georeferenced (ESA 2015)Scenes with a cloud 
cover of < 5% from 2016 were composited and mosaicked to produce a single 
cloud-free image; for the remaining scenes, all pixels that were flagged as clouds in 
the quality assessment band (which is distributed along with the spectral bands for 
each scene) were discarded and replaced with the median value of the remaining 
suitable observations in each spectral band. 

This image was then masked to exclude areas that are unlikely to contain mangrove 
forests (see Figure A1) which reduced the volume of data that required processing, 
and increased the accuracy of the analysis by ensuring that no mangroves were 

mapped inland. This step included masking water using a Modified Normalized 
Difference Water Index, which is sensitive to water and moisture (Xu 2006). With 
this index, pixels with values below a particular threshold are classed as water and 
excluded from further analysis. Additionally, all land above 35 m elevation was 
masked using a digital elevation model to restrict the analysis to the coastal zone 
where mangroves occur. The remaining imagery was used to calculate a range of 
band ratios and indices, such as the NDVI, and the ratio between the SWIR /NIR, 
to aid land cover classification.

These indices and band ratios, together with the original spectral bands, were 
combined to map mangroves using a Random Forest supervised classification 
algorithm (Breiman 2001). A supervised classification algorithm is provided 
with samples of all land cover classes of interest, and “learns” their spectral 
characteristics, and then predicts land cover across a larger area (see Chapter 4.4). 
These samples are called training data (since they are used to train the algorithm to 
distinguish between different types of land cover) and they are typically provided 
in vector format (shapes or polygons). The source of training data, in this case, 
was existing mangrove maps and additional field observations of mangroves, and 
non-mangroves (Figure A1). The resulting map of mangrove and non-mangrove 
was filtered to remove erroneously identified single pixels. This map was then used 
to calculate mangrove extent for each province in Mozambique (Figure A2). A 
quantitative accuracy assessment was carried out using high resolution Google 
Earth and limited field data collected by partners. In areas where field data were 
collected, overall accuracy was estimated at 93%. Additional field data are being 
collected to extend the validation. 
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Figure A1. Both images show the cloud-free composite of Sentinel 2A scenes 
over Quirimbas National Park, rendered as an RGB image. The left image 
contains examples of mangrove (red) and non-mangrove (blue) training data. 
The right image was created following the masking of water and elevations above 
35 m (remaining imagery is shown in bright colours).

Figure A2. Map of mangrove extent in Mozambique in 2016 
based on a supervised classification of Sentinel 2A imagery.
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Image acquired at night above the Atlantic coast of South America by the VIIRS sensor onboard the 
Suomi NPP satellite. Its “day-night band” is sensitive to small amounts of light across a relatively large 
range of wavelengths (green to near-infrared), such as might be emitted by city lights.  
Source: NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night 
Band data from the Suomi National Polar-orbiting Partnership.
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APPLICATIONS OF SATELLITE REMOTE SENSING 
IMAGERY IN ECOLOGY AND CONSERVATION

During the last two decades, spaceborne sensors have become a routine source of 
information to track biodiversity, from the population to the ecosystem level – and 
crucially, the mounting anthropogenic pressures it is facing. Throughout this chapter, we 
focus on multispectral and radar SRS. Applications of hyperspectral imagery and LiDAR, 
which are currently primarily sourced from airborne missions, are reviewed in Chapter 6. 

This chapter provides an overview of the most common applications of SRS in ecology and 
conservation, starting with ecosystem and habitat mapping (Chapter 5.1) and the use of 
SRS to monitor ecosystem condition (Chapter 5.2). Chapter 5.3 highlights how SRS can 
contribute to monitoring some of the most common threats to biodiversity. This chapter 
concludes with an introduction to a relatively new, but promising, field of application, 
namely the direct detection of animal and plant species from space (Chapter 5.4). SRS can 
inform and support conservation management at a range of scales, from local (e.g. forest 
monitoring in a single protected area; Box A) to regional (e.g. vegetation monitoring 
across the entire Arctic; Box E). Importantly, SRS is the only source of biodiversity 
data with potentially global, continuous coverage and is expected to play an important 
role developing an operational global biodiversity monitoring scheme, focused around 
Essential Biodiversity Variables (Box 1).

HIGHLIGHTS
• Remote sensing is regularly used to monitor vegetation and ecosystem structure, 

composition, and function, as well as threats such as deforestation and degradation, 
land cover change, pollution, and fire. 

• Increasing spatial and temporal resolutions are now allowing the application of 
satellite remote sensing to monitor plant and animal populations.
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BOX 1:  ESSENTIAL BIODIVERSITY VARIABLES AND SRS
Biodiversity has many dimensions – genes, species, and ecosystems – and structural, 
compositional and functional aspects. Answering the question “what is the state of 
biodiversity globally?” is thus challenging, and requires monitoring of many different 
variables. Essential Biodiversity Variables (EBVs) are being developed by the Group on Earth 
Observations Biodiversity Observation Network (GEO-BON, http://geobon.org/) to provide 
a comprehensive list of parameters which, together, will provide a synoptic picture of global 
biodiversity (Pereira et al. 2013). EBVs sit at an intermediate level between raw data (e.g. 
population counts) and indices which summarize a large variety of data to non-specialist 
policy makers and members of the public (e.g. the Living Planet Index, Loh et al. 2005). SRS 
data has a key role in the development of EBVs because it allows the standardized, repeated 
measurement of biodiversity-related parameters (SRS-EBVs) at global scales and with 
relatively high spatial resolution (Chapter 5, Appendix, Figure A). SRS data and analysis 
techniques are already capable of generating SRS-EBVs to monitor ecosystem structure and 
function (Pettorelli et al. 2016, 2017), and new satellite missions (Chapter 6) are expected 
to make species-level biodiversity monitoring possible.

Figure A. Workflow for generating SRS-EBVs, integrating ground truth data and expert 
knowledge. Figure from Pettorelli et al. (2016), published under a CC-BY license.

http://geobon.org/
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5.1 Land cover mapping and vegetation monitoring
Before exploring how SRS can help track changes in ecosystem and habitat distributions, 
a few key concepts and definitions need to be introduced. The term “ecosystem” refers 
to an assemblage of species which are interacting with each other as well as their abiotic 
environment, and the physical space in which this occurs (Pickett & Cadenasso 2002). 
Ecosystems can be defined at many spatial scales. The entire Earth system can be thought 
of as a single ecosystem. In practice, however, ecosystems are often defined at the landscape 
scale. The term “habitat” refers to those resources and conditions in an area that produce 
occupancy, including survival and reproduction, by a given organism (Morrison et al. 2006). 
In contrast to ecosystem, habitat refers to areas home to particular species (or populations), 
meaning that the variables which are important in determining a habitat vary according to 
species, location, or which spatial or temporal scales are considered (Pettorelli 2013). SRS 
does not discern ecosystems and habitats. Instead, SRS provides information on land cover, 
or properties of vegetation such as rigor or health, which affect the physical properties of a 
given surface. These properties can be characterised by the radiation that remote sensors 
capture (Simard et al. 2011). To derive information about the spatio-temporal distribution 
of biodiversity from SRS imagery, land cover is then translated into ecosystems or habitats 
(Figure 5.1). The main conceptual challenge of ecosystem and habitat mapping is 
matching commonly mapped land cover classes to ecosystem or habitat types, which is not 
always straightforward (Nagendra et al. 2013). For instance, Hansen et al. (2013) defined 
“forest” (an ecosystem type) as “all vegetation taller than 5m in height” (a land cover class) 
to produce a SRS-derived global forest map. Tropek et al. (2014) however commented that 
this approach as being unable to distinguish between “natural” forests and monospecific 
plantations, which are identical in land cover, but are arguably different ecosystems (Braun 
et al. 2017)In the following chapter, we review applications of SRS to map the extent of 
ecosystems and habitats as defined above, but it is important to note that these terms are 
often used interchangeably, or conflated with land cover.

Figure 5.1. Satellite imagery can be used to derive information about land cover (such as 
type and structure of vegetation). This is then related to ecosystem distribution, or habitat 
use of particular species.
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Mapping ecosystem extent 

SRS has been used to map ecosystems at global (Verpoorter et al. 2012; Sayre et al. 2014), 
continental (McDonald et al. 2011), and local scales (Varela et al. 2008; Bargiel 2013; 
Buck et al. 2015, Table 5.1). Though many studies map ecosystem distribution at a single 
point in time, changes in extent over time can be tracked using satellite imagery (Cui & 
Li 2011; Hermas et al. 2012; Hansen et al. 2013; Chapman et al. 2015). In the terrestrial 
realm, examples of successful ecosystem classifications include mapping forests (Potapov 
et al. 2008; Achard & Hansen 2012), grasslands (Buck et al. 2015) wetlands (Klemas 2011; 
Evans et al. 2014) and mangroves (Fatoyinbo et al. 2008; Giri et al. 2011; Shapiro et al. 
2015). Fine-grained mosaics of agriculture, semi-natural and natural ecosystems can be 
mapped accurately in many circumstances (Díaz Varela et al. 2008; Bargiel 2013), but 
require appropriate ground-truthing data to train machine learning algorithms. Compared 
to multispectral SRS, radar SRS has been applied to ecosystem mapping only relatively 
recently (Waske & Braun 2009), but it is already a key resource for monitoring forests in 
the tropics, since it is able to penetrate clouds (Whittle et al. 2012). Radar SRS has also 
been used to study wetland dynamics (Betbeder et al. 2015; Hess et al. 2015), because of 
its sensitivity to surface moisture, and consequent suitability for mapping the extent of 
surface water (Long et al. 2014), which can be used to characterise flooding frequency in a 
given area (Martinez & Le Toan 2007), even below the canopy (Lang et al. 2008).

Since both optical and radar remote sensors typically do not penetrate deep water, 
applications in the marine realm have been limited to ecosystems at shallow depths less 
than 30 m, such as seagrass meadows and coral reefs (Roelfsema et al. 2009; Dierssen 
et al. 2010; Knudby et al. 2011). Dierssen et al. (2010) demonstrated that different types 
of shallow coastal benthic cover (such as sand, mud, seagrass and algae) have distinct 
optical spectra (especially around green light wavelengths), and so can be distinguished 
using optical SRS with medium or high spectral resolution. However, to derive benthic 
cover from spectral curves, the impact of water depth has to be taken into account. This is 
because the spectrum of a given benthic cover type is blue-shifted at greater depths: water 
attenuates green light more than blue light, so the deeper the water column, the less green 
light (relative to blue light) is reflected back to the remote sensor. There are a range of 
approaches to correct for this effect, ranging from using independent information about 
sea depth (Dierssen et al. 2010), to estimating sea depth from the satellite imagery itself 

Table 5.1. Overview of ecosystem distribution mapping of different ecosystem types.

ECOSYSTEM TYPE REFERENCE
Forests (including mangroves) Giri et al. 2011; Fatoyinbo & Simard 2013; Hansen et al. 

2013; Sexton et al. 2013 

Grassland/savannah Bargiel 2013; Buck et al. 2015; Marston et al. 2017

Tundra/bare ground Hermas et al. 2012; Beck et al. 2015

Wetlands Klemas 2010; McDonald et al. 2011; Evans et al. 2014; 
Chapman et al. 2015

Freshwater bodies Cui & Li 2011; Verpoorter et al. 2012, 2014

Seagrass meadows Wabnitz et al. 2008; Roelfsema et al. 2009; Dierssen et al. 
2010; Knudby et al. 2011; Lyons et al. 2012, 

Coral reefs Andréfouët 2008; Eakin et al. 2010; Knudby et al. 2011; 
Goodman et al. 2013



SATELLITE REMOTE SENSING  57

(Hedley & Mumby 2003). Alternatively, object-based segmentation can be used to divide 
SRS imagery into spectrally homogenous patches, which are then manually assigned to 
benthic cover classes (Knudby et al. 2011; Teixeira et al. 2016). 

Mapping the extent of an ecosystem using SRS depends on dividing continuous 
spectral information into discrete classes and identifying those classes that characterise 
the ecosystem considered. Categorization of spectral information is fundamentally 
constrained by the differences in reflectance and backscatter properties – defining 
classes that “look” similar makes it hard to map them accurately. For instance, it is more 
difficult to accurately map different stages of forest regrowth using SRS information than 
to differentiate forest from grassland (Lu et al. 2011). It is also easier to accurately map 
classes with a relatively homogenous structure (such as forests with a closed canopy) than 
land cover classes characterised by high structural heterogeneity, such as open woodlands 
with scattered trees, shrubs and bare soil (Herold et al. 2008; Fritz et al. 2011; Tsendbazar 
et al. 2016). Certain ecosystems can be mapped based entirely on their distinct phenology 
as assessed by vegetation indices time series (Pettorelli 2013). 

Where land cover varies on a relatively small spatial scale, and the spatial resolution of 
SRS imagery is relatively coarse, the signal in any given pixel may be a mixture of different 
classes. Some land cover classification schemes recognize this by allowing for explicitly 
mixed classes; for instance, the International Geosphere-Biosphere Programme (IGBP) 
land cover classification scheme includes as a mapping class “mosaic of croplands, forest, 
shrub lands, and grasslands”. However, mixed classes tend to be more difficult to map 
accurately than more homogenous classes (Herold et al. 2008). If available, imagery 
with higher spatial resolution may resolve this issue (Betbeder et al. 2015). Alternatively, 
spectral unmixing allows estimating the proportions of different land cover classes in 
each pixel based on examples of reflectance signatures from “pure” pixels, or so-called 
endmembers (Cortés et al. 2014).
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BOX C:  BENTHIC HABITAT CLASSIFICATION IN THE PRIMEIRAS AND SEGUNDAS   
 ENVIRONMENTAL PROTECTED AREA
The Primeiras and Segundas Environmental Protected Area (PSEPA) encompass 
two atolls off Mozambique’s coast, and is the largest African marine protected area, 
covering 10,000 km2 (Teixeira et al. 2015). It comprises several types of ecosystems – 
mangroves, seagrass meadows and coral reefs – and supports substantial fisheries. 
To help support conservation management and planning efforts, WWF-Germany 
and ESA’s G-ECO-MON (Geographic Ecosystem Monitoring & Assessment) 
mapped benthic habitat types across 12 islands within PSEPA, covering a total of 
130 km2. Sea cover classification occurred at three, nested levels, with increasing 
thematic resolution: Level 1 describes the geomorphology (e.g. shallow water, 
lagoon), level 2 the main sea bottom substrate (e.g. sand or coral), and level 3, 
termed benthic habitat, describes finer variation in sea bottom cover (such as rock 
alone or rock covered in brown macroalgae).

Multispectral satellite imagery with very high spatial resolution (WorldView-2, 
Quickbird 2 and GeoEye-1) was acquired for the study area. Pre-processing 
(carried out in IDRISI Selva) involved radiometric and atmospheric corrections. 
The latter used a Dark Object Subtraction to remove haze – this technique is based 
on the assumption that there are always some pixels in each image from which 
reflectance is close to zero. Any reflectance that is measured from them can be 
attributed to atmospheric scattering, and this information is used to correct the 
brightness values of all other pixels. 

Two other pre-processing steps were necessary because benthic sea cover is covered 
by water: sun glint correction, and water column correction. Sun glint occurs when 
flat water reflects sunlight, appearing bright white, which occludes underlying 
benthic cover. In pixels with sun glint, the reflectance measured by the sensor is a 
combination of the signal from the water surface (due to glint) and the signal from 
the benthic cover (which is the feature of interest). The spectral signal associated 
with benthic cover can be recovered if the signal overall does not saturate the 
sensor. Brightness values for each glint-affected pixel are corrected based on the 

near-infrared band (Hedley et al. 2005). Water column correction aims to correct 
the reflectance for the attenuating effects of the water column, which vary with 
both water depth and the optical clarity of the water. This correction is based on 
the principle that, regardless of water depth, the ratio between two given spectral 
bands is constant if the benthic cover is the same. This can be used to derive depth-
independent information about benthic cover, using water attenuation coefficients 
estimated for each bands (Lyzenga 1978, 1981).

An object-based image analysis technique called nearest neighbor (implemented 
in the eCognition software) was used to classify the pre-processed imagery. This 
algorithm has two main steps. First, the imagery is segmented into objects by 
grouping similar adjacent pixels into objects. Image segmentation (unlike other 
techniques such as k-means unsupervised classification) not only takes into account 
the spectral information of each pixel, but also considers its spatial context; the 
user can in fact define the types of shapes and size of objects, based on existing 
knowledge about the general “texture” of a landscape or seascape. Second, each 
object is assigned to a class. Classes are defined a priori, and field data is used to 
identify several objects belonging to each class. Then, several SRS-based statistics 
are calculated for each class (e.g. mean green reflectance, standard deviation of 
blue/green ratio, or similar). All objects are then assigned to a class based on 
whose statistics they most closely match (i.e. whose “nearest neighbor” they are). 
This process resulted in three maps (one per level) for each of the 12 islands.

After contextual editing to remove obvious errors, the resulting maps were validated 
using field data. Field observations of benthic habitat at 666 points were made in 
2014. However, only six islands were safely accessible by boat, and so only those 
maps could be validated. For Level 3, overall mapping accuracy was 50%. This was 
likely due to a combination of high thematic resolution (between 13 and 24 benthic 
habitat classes were mapped per island) and the similarity between these classes 
(considering that “sand/rubble with rocks” and “rocks with sand and rubble” were 
considered separate classes for instance). At Level 2, overall accuracy was 70%, 
which is considered sufficient for marine mapping and planning purposes (Green 
& Edwards 2000). 
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Figure C displays the outcomes of this approach for one of the islands; these maps are commonly used in marine protected area management, e.g. to delineate fishing 
zones. The synoptic, wall-to-wall map of existing coral reefs helped characterize the environmental factors shaping their local distribution, such as water currents. This 
suggested there may be deeper coral reefs to the East of the archipelago (Teixeira et al. 2015).

Figure C.  
Classification results for Casuarina Island, at all three levels of classification. 
S = Sand; R = Rock(s), Ru = Rubble; BMA = Brown Macroalgae; SG = Seagrass.
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Mapping habitat extent

SRS can provide useful information to help map the habitat of particular species, via 
species distribution or habitat suitability modelling (Bradley et al. 2012; Figure 5.2). 
The general idea behind such models is to assess statistical relationships between a 
species’ known occurrence (assessed through presence/absence data) and environmental 
variables that reflect crucial resources or conditions (such as vegetation productivity) to 
characterise suitable habitats for that species. SRS-derived variables have been widely 
used as predictor variables in habitat suitability models (He et al. 2015) and SRS-
informed habitat maps have been used to identify priority areas such as wildlife corridors 
for migratory animal species such as elephants (Pittiglio et al. 2012); or pandas  (Wang 
et al. 2014); areas for translocations (Freemantle et al. 2013); and for quantifying the 
impact of anthropogenic pressures on a species’ distribution (Ramírez et al. 2014), such as 
climate change (Forrest et al. 2012).

Figure 5.2. The concept behind all species distribution models (SDMs) is to use 
environmental information in the form of geospatial information (layers) to predict the 
probability of species occurrence (see first row). SRS can be used in two ways to inform 
SDMs: they can provide information about species occurrence (direct species detection; 
the response variable), or they can provide information about the environment (such as 
vegetation type; predictor variable). Habitat mapping using SRS refers to the latter. Direct 
species detection is discussed in Chapter 5.4. Figure from He et al. 2015, published 
under a CC-BY license.
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The selection of meaningful SRS-derived variables to inform a given habitat suitability 
model depends on a robust understanding of the species ecology (Cord & Rödder 2011). 
For instance, Beck et al. (2005) used satellite-derived snow maps, in addition to other 
variables such as topography to predict suitable habitat for an Arctic dwarf shrub (Dryas 
octopetala) that is known to be absent from sites where it snows. In some cases it may 
be possible to map key habitat resources directly, such as food (Théau et al. 2005). More 
commonly, however, vegetation productivity, structure and phenology (as indexed, for 
instance, by the NDVI or the LAI), as well as land cover, are used to model both animal 
and plant habitat suitability (Kuemmerle et al. 2010, 2011; Nagendra et al. 2013; Pettorelli 
2013; He et al. 2015). Imam et al. (2009) used NDVI as a proxy for forest density to map 
the habitat of Bengal tigers, whereas Louzao et al. (2011) demonstrated how wandering 
albatross habitat use could be partially explained by SRS-derived information relating to 
seascape structure, in this case bathymetric and sea surface temperature. Interestingly, 
including “raw” SRS data, such as surface reflectance, with no clear biological or ecological 
meaning has in some instances been shown to improve species distribution models, both 
for plants (Parviainen et al. 2013) and wildlife (St-Louis et al. 2014). Information about 
the three-dimensional structure of habitats as assessed from spaceborne radar sensors is 
currently rarely used in habitat modelling (airborne LiDAR is more widespread; Vogeler & 
Cohen 2016) but represents a clear opportunity to gain an even greater understanding of 
species’ requirements in the future.

For both animal as well as plant species, SRS-based species distribution models are a 
key source of information to identify areas that are vulnerable to invasion, both now 
and in the future. For instance, Bisrat et al. (2012) modelled the habitat of an invasive 
frog (Eleutherodactylus coqui) in its native Puerto Rico, and used this information 
to predict its potential distribution in Hawaii (where it is invasive. Similarly, Roura-
Pascual et al. (2004) used SRS-based habitat modelling to identify areas vulnerable to 
invasion by Argentine fire ants (Linepithema humile) worldwide, and Clark et al. (2014) 
used remotely sensed information about vegetation phenology to identify areas along 
the Appalachian trail (USA) which may be vulnerable to the spread of tree-of-heaven 
(Ailanthus altissima), an invasive shrub, as part of a natural resource management 
support system.

When modelling the habitat of plant species, there is a chance that SRS-derived 
environmental variables such as vegetation indices may not be independent from species 
distribution data. This is for example likely to be the case for overstorey species which are 
relatively common compared to the pixel size of the imagery used, and could therefore 
have a distinct impact on the vegetation indices. An example for this would be if the 
distribution of a forest tree in a fragmented landscape was predicted using the LAI; since 
forests have higher LAI than cropland, recently deforested areas might be predicted as 
unsuitable habitat (Bradley et al. 2012). However, in cases where a given plant species 
does not form homogenous stands large enough to impact vegetation indices directly, 
these indices can be valuable environmental predictors for plant distribution models. 
Examples include using the NDVI for habitat modelling of neotropical Rubicae (Amaral et 
al. 2007) and the LAI for five Amazonian tree species (Saatchi et al. 2008).

5.2 Ecosystem and habitat condition
Degradation can have negative impacts on biodiversity before conversion takes place (Keith 
et al. 2013), which is why many managers and scientists are interested in ways to monitor 
changes in ecosystem or habitat condition. Ecological condition can be defined as having 
three dimensions – structure, composition, and functioning – which can be captured via 
SRS, mainly using continuous variables such as biomass (a structural parameter), species 
diversity (a compositional parameter) or vegetation productivity (a functional parameter).
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Structure

Ecosystem (or habitat) structure has two components: horizontal and vertical (Bergen et 
al. 2009). The horizontal component refers to the spatial configuration of ecosystem or 
habitat patches in a landscape, and can be quantified via a range of fragmentation indices, 
including the number of patches, edge length or patch cohesion (Saura 2004; McGarigal 
2015). These can all be calculated based on appropriate SRS-derived information. For 
instance, (Armenteras et al. 2003) used maps of forest distribution derived from Landsat 
TM imagery to quantify forest fragmentation across Colombia. Similarly, Nagendra et 
al. (2008) investigated horizontal landscape structure of forest in Nepal to investigate 
forest fragmentation under different management regimes. Where SRS imagery with high 
spatial resolution is available, mapping small canopy gaps (e.g. as a result of selective 
logging) is possible (De Sy et al. 2012). Though long-term field experiments have been 
invaluable for investigating the outcomes of fragmentation on biodiversity, only SRS is 
able to provide wall-to-wall views on horizontal ecosystem and habitat structure at the 
landscape and even global scale (Haddad et al. 2015; Riitters et al. 2016).

By contrast, vertical structure refers to the vertical arrangement of landscape features, 
such as vegetation. Active satellite remote sensing (radar and LiDAR) is sensitive to 
the three-dimensional structure of land cover, and is thus often used to characterise 
vertical canopy structure. In closed forests, the focus is often on measuring vegetation 
height, mainly using airborne LiDAR (see Melin et al. 2017 for an overview). However, 
interferometry radar (InSAR) paired with a digital elevation model can also be used to 
map tree height in forest stands (Solberg et al. 2014). Longwave radar (P- and L-band) 
backscatter is affected by the presence and arrangement of tree trunks and branches 
(Imhoff 1995), and can be used to map fractional woody vegetation (Urbazaev et al. 
2015). Radar SRS has emerged as a routine tool for investigating parameters such as 
aboveground biomass distribution (Sinha et al. 2015; Lu et al. 2016). Vertical structure 
can also be estimated from multispectral data; Lefsky (2010) combined MODIS imagery 
with height information from airborne LiDAR to produce a global forest height map. 
Finally, the LAI one-sided leaf area per unit ground area (Myneni 1997) is a key vertical 
structure parameter, sensitive to e.g. seasonal changes in canopy structures in broadleaf 
forests (Rautiainen et al. 2012). SRS imagery can be used to derive LAI at relatively coarse 
spatial resolution (see Chapter 3.3), whereas, for local scale investigations, airborne 
LiDAR allows estimating LAI at higher spatial resolution (Tang et al. 2014).

Composition

SRS data has been used to map plant species composition or richness by linking remotely 
sensed variables to field observations of species composition or richness using empirical 
models. For instance, Wolter & Townsend (2011) were able to estimate the relative basal 
area of several tree species in a given pixel by combining multispectral and radar data, 
essentially mapping forest composition. SRS data has also been used to extrapolate local 
measurements of tree species richness across the entire Amazon (Saatchi et al. 2008) by 
combining multispectral and radar SRS-derived variables. 

Functioning

Satellite remote sensing data has large potential to inform large scale, repeated 
monitoring of a range of ecosystem functions (Pettorelli et al. 2017). To date, the focus 
has been on characterising vegetation productivity as a key ecosystem process. Often, 
a vegetation index such as the NDVI is used directly as a proxy for productivity, e.g. 
to characterise changes in phenology over time or differences in productivity in space 
(Fensholt et al. 2015). For instance, NDVI time series are used widely to characterise 
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degradation of drylands, under the assumption that NDVI declines in areas where 
vegetation recedes (Higginbottom & Symeonakis 2014). Alternatively, gross and net 
primary productivity of terrestrial vegetation can be estimated from multispectral 
SRS data combined with the fraction of photosynthetically active vegetation and 
vegetation respiration rates (Running et al. 2004). Insights into characteristic patterns 
of productivity (e.g. seasonal phenology) and changes therein can be used to elucidate 
the environmental drivers behind changes in productivity (Pettorelli et al. 2005). In the 
marine realm, ocean colour (i.e. surface reflectance over the oceans) is a standard tool 
for monitoring algal blooms, via estimates of chlorophyll-α concentrations (Blondeau-
Patissier et al. 2014), both in pelagic and the optically more complex coastal waters 
(Kratzer & Vinterhav 2010; González Taboada & Anadón 2014; Palmer et al. 2015). SRS-
derived chlorophyll-α concentration also allows modelling marine primary productivity at 
large spatial scales (Chassot et al. 2010).

SRS has moreover become a useful tool for characterizing disturbance regimes at the 
landscape or even continental scale. For instance, thanks to the sensitivity of mid-infrared 
wavelengths to water (Frazier et al. 2000) it is possible to create flood risk maps by 
repeatedly mapping surface water extent, e.g. using Landsat imagery (Skakun et al. 2014). 
Floods can also be detected by radar (Gan et al. 2012. Long et al. 2014) mapped flooding 
frequency in a remote area in Southern Africa based on a time series of radar images. 
At a global scale, radar imagery is being used to construct a global record of inundation 
frequencies (McDonald et al. 2011) and a global record of changes in global surface water 
dynamics was generated from Landsat imagery (Mayaux et al. 2013). 

Herbivory shapes ecosystem functioning through its effects on primary and secondary 
productivity (Duffy et al. 2003) and nutrient regulation (Piñeiro et al. 2010); it is also 
a mechanism of biological control (Stiling & Cornelissen 2005) and seed dispersal 
(Nathan et al. 2008). The ecosystem-level effects of wild and domesticated herbivores 
on vegetation can be quantified using vegetation indices such as the NDVI (Blanco et al. 
2009; Rickbeil et al. 2015). To attribute changes in NDVI to herbivores, their effect needs 
to be separated from the effect of season, precipitation and vegetation type, which is 
possible if variation in herbivory pressure is known. In large forest stands with continuous 
canopy cover, the impact of short bursts of defoliating insects can also be tracked, even 
when using satellite imagery with relatively coarse spatial resolution (Bradley et al. 2012). 
The impact of insects can be distinguished from other disturbances such as fire or logging 
(Senf et al. 2015), although, it can be difficult to reliably quantify outbreak intensity (as 
opposed to simply distinguishing affected and non-affected area) if intensity varies at small 
spatial scales compared to the spatial resolution of the imagery used (Eklundh et al. 2009).
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BOX D:  USING VEGETATION INDICES FOR MONITORING AND UNDERSTANDING   
ECOSYSTEM FUNCTIONING IN THE ARCTIC
The two previous case studies have illustrated how satellite remote sensing can be 
used to map ecosystem distribution or changes in ecosystem structure as a result 
of degradation. SRS data also provide information about ecosystem processes and 
functions (Pettorelli et al. 2017). Vegetation index products (see Chapter 2.3 
and 3.3) are widely used as proxies for primary productivity and a key resource 
for large-scale mapping of ecosystem functioning.In this case study, areas of high 
terrestrial primary productivity were mapped across the Arctic, based on a MODIS 
NDVI product. This effort is part of WWF’s Rapid Assessment of Circum-Arctic 
Ecosystem Resilience (RACER). The idea underpinning this approach is to map 
areas of high habitat diversity and productivity, identify the drivers behind them, 
and estimate the effects of future climate change on these drivers with the aim of 
appraising present and predicting future ecosystem resilience. Using SRS products 
is necessary for the “Rapid” aspect of RACER: the routine production of high-level 
SRS products such as NDVI enables fast assessments of ecosystem condition across 
large areas. The basis for the ecosystem productivity assessment was the MODIS 
Global Monthly NDVI, which is distributed as part of the MOD13A3 product. This 
NDVI product has a spatial resolution of 1km, and is a composite of 16-day NDVI 
product which is derived from MODIS surface reflectance (Huete et al. 2002). All 
available scenes covering the study area between 2000 and 2010 were downloaded. 
For each summer (June-August) the maximum NDVI value was calculated in each 
pixel and the median of these values from 2000 to 2010 was calculated. For each 
of the five Arctic bioclimatic zones, which are determined based on mean July 
temperatures and Summer warmth index, as well as distinct vegetation structure 
(Walker et al. 2005), the distribution of NDVI values was generated, and each pixel 
assigned into a percentile. Lastly, pixels in high percentiles (> 75%) were mapped 
(see Figure D). These maps can then be compared to areas of conservation 
significance, e.g. Key Bird Habitat Areas, Protected Areas and caribou calving 
grounds, or used to quantify which types of vegetation contribute the most to 
overall arctic ecosystem productivity.Mapping current hotspots of ecosystem 
productivity allows identification of the factors driving productivity in this part of 
the world. Climate change effects can then be modelled to gauge how productivity 

may change with varying climatic conditions. This can help identify areas which 
are at a high risk of losing their ecological resilience, and which should thus be 
prioritized for conservation. 

Figure D. Results of ecosystem productivity mapping for central Canada. Areas 
in yellow, orange and red have exceptionally high median NDVI values (2000-
2010), which were derived from MODIS Global NDVI. These areas are important 
hubs of ecosystem productivity in the Arctic.
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5.3 Threats to biodiversity
As pressures on biodiversity increase (Butchart et al. 2010; Venter et al. 2016), 
information about the type, magnitude, and spatio-temporal distribution of threats to 
biodiversity are necessary to inform management responses (Tulloch et al. 2015). SRS has 
been employed to monitor a wide range of anthropogenic threats which affect species and 
ecosystems, from climate change to resource extraction, in both terrestrial and marine 
systems. It provides a means to monitor biodiversity threats at the global scale, and detect 
changes in threat over time; two aspects which are crucial for informing policy response, 
yet are often missing from existing datasets on biodiversity threats (Joppa et al. 2016).

Deforestation and forest degradation

SRS is a routine tool for monitoring deforestation and forest degradation, especially in 
the tropics, and is expected to be an important data source for an operationalised REDD+ 
mechanism (Herold & Johns 2007; Romijn et al. 2015). Multispectral SRS imagery 
such as Landsat or MODIS is the most commonly used data source for monitoring 
deforestation (De Sy et al. 2012) at both global (Hansen et al. 2013) and regional 
scales (Potapov et al. 2012). Indeed, a range of operational deforestation monitoring 
programmes are based on multispectral SRS (FORMA in Asia, Africa and South America, 
PRODES and DETER for the Brazilian Amazon; Wheeler et al. 2014; i-Terra for South 
America and global tropical regions; Leisher et al. 2013). Cloud cover can significantly 
reduce data availability from multispectral sensors in tropical regions, especially during 
the wet season (Garonna et al. 2009). For instance, there is very little chance of acquiring 
a Landsat image with less than 30% clouds over the Brazilian Amazon during the wet 
season (Asner 2001). However, Image compositing, which is the creation of a cloud-
free image by choosing cloud-free pixels from images acquired at different times, can 
overcome this problem, at the expense of temporal resolution. Radar data are therefore 
sometimes used as an alternative to map deforestation (Rahman & Sumantyo 2010), since 
it is sensitive to differences in canopy volume and vertical structure, and can provide data 
even under cloudy conditions. Combining multispectral and radar data has been shown to 
be particularly powerful, increasing both the spatial accuracy and reducing detection lags 
(Reiche et al. 2015a), thereby allowing near real-time detection of deforestation events 
(Reiche et al. 2015b). 

SRS is also a key resource to detect subtler forest degradation (De Sy et al. 2012), 
which refers to changes in forest structure, functioning, biomass or composition e.g. 
as a result of selective logging or disturbance from wildfire. In the context of REDD+, 
forest degradation generally refers to the loss of carbon stock in forests in the absence of 
significant forest cover change (Herold et al. 2011a). SRS is useful especially for mapping 
degradation that affects the canopy structure (e.g. forest fragmentation, large fires), rather 
than subtler changes which may for instance result from firewood collection, understorey 
thinning or extraction of non-timber products (Herold et al. 2011a, b). Examples for 
SRS-based degradation monitoring include mapping per-pixel canopy gap fractions using 
Landsat imagery (Asner et al. 2004), and using the spatial signature of logging activities 
(log landings and roads) to distinguish anthropogenic from natural forest degradation 
(Souza & Roberts 2005; Souza et al. 2005). Mapping burn scars and active fires allows 
monitoring changes in fire dynamics, which is associated with forest degradation e.g. in 
the Amazon (Miettinen et al. 2016; see below). There have also been successful examples 
of using SRS imagery to monitor the impact of defoliating insects (Gleeson et al. 2000; 
Pasquarella et al. 2017). Additionally, some studies have used proxy methods to assess 
degradation from Landsat or MODIS (Chaplin-Kramer et al. 2015; Riitters et al. 2016; 
Shapiro et al. 2016; Brinck et al. 2017).
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Fire

Though fire is an important disturbance process in many ecosystems, e.g. savannahs 
(Lehmann et al. 2014; Caillault et al. 2015), fire frequency and intensity is altered by 
humans in many areas as a result of land use change (Bucini & Lambin 2002), with 
harmful effects on biodiversity. Multispectral as well as SAR have been used to monitor 
active fires, map burned area, or quantify fuel availability and flammability (see Herawati 
et al. 2015 for a review; see Appendix for routinely produced active fire and burned area 
maps; Figure 5.3) sometimes as part of operational fire products, including the MODIS 
Active Fire products (Giglio et al. 2016). These products can be used to characterise fire 
disturbance at large spatial scales (Hempson et al. 2017), to understand their drivers 
(Mollicone et al. 2006; Hantson et al. 2015).

Figure 5.3. Active fire and burn scars in the Okefenokee National Wildlife Refuge in 
the United States. Active fires can be detected from space from their high temperature 
using thermal bands of multispectral sensors. Burn scars can be detected by multispectral 
sensor as well as radar sensors from the change in surface structure (e.g. loss of 
vegetation), and their darker colour (multispectral sensors only). Image credits: NASA 
Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological 
Survey. 
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Climate change 

SRS data have provided independent records of the effects of global climate change, from 
increasing sea and tropospheric temperatures, retreating snow cover as well as land and 
sea ice cover, to global sea level rise (Shirley et al. 2013). SRS has also informed models 
of temperatures in permafrost soil (Langer et al. 2013), an important reservoir of carbon 
susceptible to release with increasing temperatures (Schuur et al. 2009). In the context 
of biodiversity conservation, SRS allows monitoring and predicting the impact of climate 
change on species and ecosystems. Shifts in species’ phenology and distribution, as well as 
extinction, in response to climate change have been observed globally (Parmesan 2006). 
Information from SRS can help predict the effects of climate change on a given species 
via SRS-based projections of future habitat change (Singh & Milner-Gulland 2011). At 
the ecosystem level, climate change can be expected to affect structural, compositional 
and functional aspects, and SRS can provide insight into the impact of climate change on 
these aspects. For instance, radar SRS imagery can be used to map coastal retreat to gauge 
threats from sea level rise to low–lying ecosystems, such as marshes and mangrove forests 
(Cornforth et al. 2013; Kirwan & Megonigal 2013). Vegetation indices enable large-scale 
monitoring of primary productivity, making it possible to track the impact of climate 
change on this key ecosystem process, e.g. the use of NDVI to monitor large-scale changes 
in vegetation productivity and phenology in response to changing precipitation regimes 
(de Jong et al. 2011; Pettorelli et al. 2012).

Apart from gradual changes, climate change is likely to affect the frequency and intensity 
of extreme events such as heat waves, heavy rains, droughts, extreme coastal high water 
(Intergovernmental Panel on Climate Change (IPCC) 2012), and fires. Such extreme 
events can impact biodiversity (Ameca y Juárez et al. 2012), since their intensities and 
frequencies are (by definition) different from common disturbance processes in a given 
ecosystem, exhausting adaptive capacity (Jentsch & Beierkuhnlein 2008). In the marine 
realm, SRS imagery is a key tool for monitoring coral reef bleaching events (Liu et al. 
2003); the United States National Oceanic and Atmospheric Administration’s Coral Reef 
Watch integrates SRS data from different sensors to detect extreme thermal conditions 
(Liu et al. 2014). In the terrestrial realm, droughts can be detected using SRS-derived 
information on precipitation, soil moisture and evapotranspiration, and their effect on 
vegetation can be monitored via the NDVI (or NDWI) and derived indices, and land 
surface temperature (AghaKouchak et al. 2015), which has also been used to derive a 
continental map of drought probability for Africa (Rojas et al. 2011). 

Atmospheric and water pollution

Atmospheric nitrogen deposition can have negative consequences for plant biodiversity, 
both via direct toxic effects (Pearson & Stewart 1993) or via indirect effects such as 
increasing susceptibility to pathogens and herbivores (Nordin et al. 2005). The source of 
this pollution – nitrous oxides – can be detected by multispectral and UV SRS imagery, 
for example from the Ozone Monitoring Instrument  (Beirle et al. 2011; Schaap et al. 
2013). There is evidence that cloud cover tends to be higher when there is more nitrous 
oxide in the air, potentially resulting in underestimation of this pollutant when measured 
by multispectral SRS (Geddes et al. 2012).

In the marine realm, SRS provides timely information about the extent, type and 
movement of oil spills, which can have significant negative consequences for affected 
ecosystems (Beyer et al. 2016). Thin layers of oil produce glint, whereas thick layers emit 
radiation at high wavelengths, both of which can be detected by optical SRS. In addition, 
the oil layer dampens waves, reducing sea roughness, which can be picked up by radar 
(Klemas 2011). Both types of SRS were important to informing the response to the British 

NOAA Coral Reef Watch  
https://coralreefwatch.
noaa.gov/satellite/index.
php

https://coralreefwatch.noaa.gov/satellite/index.php
https://coralreefwatch.noaa.gov/satellite/index.php
https://coralreefwatch.noaa.gov/satellite/index.php
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Petroleum Deepwater Horizon spill (Leifer et al. 2012): MODIS and MERIS imagery 
were used to map the oil field’s extent and its change over time, and AVIRIS was useful in 
characterizing the thickness of the oil field. 

In both freshwater and marine ecosystems, SRS data have been used to monitor 
eutrophication of coastal waters via a range of indices, including chlorophyll-α, Secchi 
Disk Depth and/or coloured dissolved organic matter mapped based on ocean colour 
imagery (Matthews et al. 2010; Zhu et al. 2014; Harvey et al. 2015). Additionally, blooms 
of certain toxic algae can be detected from space, such as Karena brevis, which causes 
harmful “red tides” along the West Coast of Florida (Carvalho et al. 2010).

Urbanisation and agricultural expansion

Urban and agricultural areas are often easily distinguishable in SRS imagery because of 
their distinct land cover composition, including bare soil, short vegetation and impervious 
surfaces. Impervious surfaces in particular have a strong effect on surface reflectance 
(compared to water, vegetation or bare soil), allowing them to be accurately mapped 
using vegetation indices (Sawaya et al. 2003), or their reflectance in the visible spectrum 
(Taubenböck et al. 2012). Urban areas can also be monitored via artificial night light 
emissions, which can be detected by optical sensors that are very sensitive in the visible 
spectrum. For instance, the VIIRS/DNB sensor can detect light emitted from a single 
street lamp (Miller et al. 2013). Night time light has been used to investigate patterns of 
urban expansion and population growth (Álvarez-Berríos et al. 2013).

Multispectral imagery with high and medium spatial resolution is commonly used to map 
agricultural areas at local or regional scales (Schulte to Bühne et al. 2017; Figure 5.4). 
To distinguish between similar types of agricultural land use (such as different crop 
or management types), a combination of optical and radar SRS data is often useful 
(Joshi et al. 2016). Especially in tropical forests, ecosystems are often not replaced by 
cropland or settlements, but rather by plantations, such as oil palm (in Southeast Asia 
and Africa) and rubber. Plantations are structurally more similar to forests than other 
anthropogenic land use types (e.g. they have tall canopies), but they have characteristics 
that enable them to be distinguished via SRS (such as regular spacing of trees and 
homogenous canopy height). For instance, L-band radar imagery (e.g. ALOS PALSAR), 
which interacts with branches and foliage below the canopy, has been used to distinguish 
oil palm from primary or logged forest (Koh et al. 2011; Morel et al. 2011). In cases 
where cloud cover is low enough, multispectral imagery has been used instead, mapping 
phenological differences between plantations and primary forest (Dong et al. 2013; Li et 
al. 2015). Human land use not only causes immediate changes to vegetation structure and 
composition – such as a shift from a multi-layered, multispecies forest canopy to single-
layer, monospecific cropland – but can also lead to long-term changes in processes such as 
desertification and soil degradation. Here, too, SRS offers monitoring opportunities: the 
NDVI has for example been widely used to assess desertification, although validation of 
this approach has been limited (Higginbottom & Symeonakis 2014), and soil parameters 
(e.g. pH or grain size) have been mapped at continental scales based on MODIS imagery 
and a network of in situ measurements (Vågen et al. 2016).
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Oil exploration and mining activities

Oil exploration and mining can have harmful effects on biodiversity, resulting in 
habitat and ecosystem loss (Simmons et al. 2008; Deikumah et al. 2014; Stabach et 
al. 2017), increased human-wildlife conflict and poaching (Suárez et al. 2009), as well 
as pollution (Dudka & Adriano 1997; Akani et al. 2004). Surface mining for minerals 
or coal results in drastic land cover change (e.g. deforestation), which is detected by 
SRS imagery (Townsend et al. 2009; Swenson et al. 2011; Álvarez-Berrios & Mitchell 
Aide 2015). Importantly, clandestine, small-scale mining operations can be detected 
using SRS imagery with high spatial resolution (30 m) by mapping sub-pixel vegetation 
cover (Asner et al. 2013). Oil plants are much less spatially extensive, but they can be 
detected by finding oil flares, which have high infrared reflectance (Casadio et al. 2012). 
For instance, burning oil fields in the Persian Gulf region can be identified by their high 
infrared reflectance as detected by the AVHRR sensor (Matson & Dozier 1981). The 
MODIS active fire product was built to monitor vegetation fires, but can also detect these 
flares (Oom & Pereira 2012). Alternatively, Landsat imagery has been used to identify 
previously unknown oil plants on a regional scale (Duncan et al. 2014) and detect plumes 
from oil fires (Cahalan 1992). It might also be possible to identify oil exploration activities 
by mapping associated infrastructure, especially in desert ecosystems, using radar SRS 
(Felbier et al. 2012); however, this approach would requires an additional processing step 
to distinguish oil extraction from other infrastructure, e.g. settlements (Duncan et al. 
2014).

Figure 5.4. Contrasting tasselled cap brightness between cropland (light) and savannah 
vegetation (dark) across the entire W-Arly-Pendjari transboundary protected area 
complex (West Africa). The zoomed in area shows how the Tindangou-Nadiagou Enclave 
in Burkina Faso has been cleared for agriculture, while the Pama Centre Sud hunting zone 
(also in Burkina Faso) was not. Imagery: Landsat 8 from USGS, September-October 2013.
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Illegal fishing

Both optical and radar imagery have been used for decades to detect ships (Corbane et al. 
2010; Brusch et al. 2011), which can aid MPA management by detecting potential fishing 
vessels (Kachelriess et al. 2014). The size of the smallest ship that can be distinguished 
is constrained by the spatial resolution of the SRS imagery (ca. 100 m for Landsat, ca. 
5 m for SPOT-5). Corbane et al. (2010) identified ships from SPOT-5 imagery by first 
screening the imagery for very bright but small objects (potential ships), and then 
reducing the number of false positives by taking into account context (e.g. discarding high 
wave crests that are erroneously identified as ships), using a completely unsupervised 
image analysis process. However, even though true ships were reliably detected, the false 
positive rate was several orders of magnitude higher than true positives. Interestingly, 
Trujillo et al. (2012) demonstrated that imagery with very high spatial resolution from 
Google Earth can be used to detect fish cages across large spatial scales. This does not 
systematically constitute illegal fishing, but it is necessary to accurately estimate farmed 
fish production for good resource use.

5.4 Monitoring individual species
In contrast to ecosystem and habitat mapping for a particular species (He et al. 2015; 
Chapter 5.1), or threat detection, SRS data are also sometimes used to detect individual 
species (Table 5.2), and a growing number of cases studies are determining whether it is 
possible to count individual animals or map homogenous stands or species richness (for 
plants and phytoplankton) from space. In this chapter, we give an overview of examples 
where SRS data have been used to detect or map species directly. 

Table 5.2. Overview of ecosystem distribution mapping of different ecosystem types.

REFERENCE FOCAL SPECIES SRS DATA USED SPATIAL RESOLUTION DETECTION METHOD VALIDATION DATA

ANIMALS

Laliberte & Ripple 
(2003)

Domestic cattle 
(Bos taurus)

IKONOS 1 m Thresholding Manual 
screening of 
imagery

LaRue et al. 
(2011).

Weddle Seals 
(Leptonychotes 
weddellii)

QuickBird2, 
WorldView-1 

0.6 m Manual 
screening of 
imagery

Ground counts

Fretwell et al. 
(2012)

Emperor 
penguins 
(Aptenodytes 
fosteri)

QuickBird2 0.6 m Supervised 
classification

None

Platonov et al. 
(2013)

Polar bears 
(Ursus 
maritimus)

Geo-Eye 0.5 m Manual 
screening of 
imagery

None

Fretwell et al. 
(2014)

Southern 
Right Whale 
(Eubalaena 
australis)

WorldView-2 0.5 m Thresholding Manual 
screening of 
imagery

Stapleton et al. 
(2014)

Polar bears 
(Ursus 
maritimus)

WorldView-2, 
QuickBird

0.5 – 0.65 m Manual 
screening of 
imagery

Aerial survey

Yang et al. 2014 Wildebeest 
(Connochaetes 
spp.), Burchell’s 
zebras (Equus 
quagga 
burchelli)

GeoEye-1 0.5 m Supervised 
classification 
and 
thresholding

Manual 
screening of 
imagery
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REFERENCE FOCAL SPECIES SRS DATA USED SPATIAL RESOLUTION DETECTION METHOD VALIDATION DATA

PLANTS (TERRESTRIAL) AND PHYTOPLANKTON (MARINE)

Alvain et al. 
(2005)

Phytoplankton 
(haptophytes, 
Prochlorococ-
cus, Synechoc-
occus-like 
cyanobacteria, 
diatoms)

SeaWiFs 9 km Look-up table 
of spectral 
characteris-
tics of  
pigments

Qualitative 
comparison 
with in situ 
sampling

Bradley & 
Mustard (2006)

Cheatgrass 
(Bromus 
tectorum)

Landsat 30 m Thresholding In situ  
observations

Raitsos et al. 
(2008)

Phytoplankton 
(diatoms, dino-
flagellates, coc-
colithophores, 
silicoflagellates)

SeaWiFS, 
AVHRR, 
QuickSCAT, 
ERS-2

4 – 50 km Machine 
learning 
algorithm

In situ  
observations

Tuanmu et al. 
(2010)

Arrow bamboo 
(Bashania 
faberi), 
umbrella 
bamboo 
(Fargesia 
robusta)

MODIS 250 m Maxent 
model based 
on NDVI

In situ  
observations

Hoyos et al. 
(2010)

Glossy Privet 
(Ligustrum 
lucidum)

Landsat 30 m Machine 
learning 
algorithm

In situ  
observations

Gavier-Pizarro et 
al. (2012)

Glossy Privet 
(Ligustrum 
lucidum)

Landsat 30 m Machine 
learning 
algorithm

In situ  
observations; 
observations 
from SRS  
imagery with 
very high  
spatial  
resolution

Ghulam et al. 
(2014)

Guava (Psidium 
cattleianum), 
Madagascar 
cardamom 
(Aframomum 
angustifolium), 
Molucca 
raspberry 
(Rubus 
moluccanus)

Landsat, 
Hyperion, 
Geoeye-1, 
IKONOS; 
RADARSAT-2; 
ALOS PALSAR

0.5 – 30 m Machine 
learning 
algorithm

In situ  
observations

Wildlife

Counting wildlife via SRS can be a valuable alternative or complement to field-based 
approaches, especially where a population of interest is distributed across a large and/
or inaccessible area, there is limited vegetation and clouds that hamper the view, and 
animals stand out clearly against the background (for example snow or dark, short 
vegetation; Fretwell et al. 2012; Yang et al. 2014). Indeed, there are many successful 
examples from the Arctic or Antarctica (LaRue et al. 2011; Fretwell et al. 2012; Stapleton 
et al. 2014) where these kinds of conditions prevail. Whereas SRS is mainly used to count 
terrestrial animals, mapping marine animals is possible when they come close enough to 
the surface to be visible (e.g. for breathing or hunting), since SRS sensors normally do not 
penetrate the water column very deeply. For instance, Fretwell et al. (2014) were able to 
detect Southern Right Whales (ca. 16 m in length) in Golfo Nuevo Bay using multispectral 
imagery.

SRS data with very high spatial resolution (typically < 1 m) is necessary to be able to 
distinguish individuals with a length of at least 1-2 m from their background (Figure 5.5; He 
et al. 2015). Despite the growing availability of imagery with very high spatial resolution, 



SATELLITE REMOTE SENSING  72

most of these data are only available from commercial providers (which means costs can 
be considerable), and data coverage may be limited or only available for small footprints 
(see Chapter 3.1). As a result, the area across which animals are counted is typically 
limited, with notable exceptions from the Antarctic coastline (Fretwell et al. 2012) and one 
exploiting imagery from different years to monitor changes in animal numbers (LaRue et 
al. 2011).

There are two main approaches to counting animal individuals using SRS imagery 
with very high spatial resolution. Imagery can either be screened manually in a GIS 
environment (LaRue et al. 2011; Stapleton et al. 2014), which is useful if the population 
of interest is small and/or individuals occur in clusters. Manual methods however, can 
be time-consuming (Platonov et al. 2013). Alternatively, individuals can be detected 
automatically, either by setting manual thresholds to distinguish (bright) individuals from 
the (darker) background (Press & Laliberte 2003; Fretwell et al. 2014) or via supervised 
classification algorithms or machine learning techniques (Fretwell et al. 2012; Yang et al. 
2014). 

Counts from such automated approaches should be validated where possible, for instance 
using aerial imagery (Fretwell et al. 2012; Stapleton et al. 2014) or ground counts 
(LaRue et al. 2011). However, especially for highly mobile species, validation imagery 
must be acquired very close in time the counts, which can be difficult. As a result, many 
case studies use manual counts on the same imagery used for automated methods for 
validation instead (Fretwell et al. 2014; Yang et al. 2014). As the availability of SRS data 
with very high spatial resolution will increase with the new SmallSats/CubeSats and 
other missions (see Chapter 6), data cost and availability of appropriate validation data 
will remain among the main challenges to monitoring animal species using SRS at large 
spatial and temporal scales.

Figure 5.5. Google Earth imagery (with very high spatial resolution) depicting seals 
resting on a beach.
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Plants and phytoplankton

Multispectral SRS imagery is able to directly detect plant species that form large, 
spectrally or structurally distinct stands compared to surrounding species, as indicated by 
vegetation indices (Pettorelli 2013; Figure 5.6). A common application of plant species 
detection from space is the detection of invasive species, which often form such stands. 
For instance, Glossy Privet (Ligustrum lucidum), an invasive tree in Latin American 
forests, has been mapped with > 80% accuracy using Landsat, making it possible to assess 
its impact on forest structure and biodiversity (Hoyos et al. 2010; Gavier-Pizarro et al. 
2012).

A distinct phenological “signature” compared to the surrounding vegetation is required 
to be able to map single plant species. For instance Bradley & Mustard (2006) took 
advantage of the fact that invasive cheatgrass (Bromus tectorum) (1) reaches peak 
greenness earlier during the growing season, and declines earlier and faster, than native 
species, and (2) that during wet years, cheatgrass greenness is much higher than in dry 
years, whereas native species show little response. By comparing NDVI derived from 
Landsat imagery from early and late in the same growing season, and between dry and 
wet years, they mapped its spread through the Great Basin (USA). Plant species can 
even be detected in the understory of forests if their phenology stands out. For instance, 
Tuanmu et al. (2010) were able to map two bamboo species in the understory of a forest 
using a vegetation index similar to NDVI, largely because, compared to other understorey 
species, bamboo had quite high biomass (which resulted in overall higher NDVI values) 
and distinct phenology (which resulted in a larger amplitude in NDVI changes over 
time). Similarly, Wilfong et al. (2009) used NDVI to map the invasive Amur honeysuckle 
(Lonicera maackii) underneath deciduous trees, based on the observation that 

Figure 5.6. Plant species can be detected if they dominate the phenological or spectral 
signal of different pixels (A). In a mixed canopy, the phenological or spectral signal will be 
a mixture of different species, making detection more difficult (B).
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honeysuckle still had green leaves (i.e. higher NDVI) late in the growing season, when the 
overstory vegetation had largely senesced. By contrast, Ghulam et al. (2014) capitalised on 
the ability of longwave radar to penetrate the canopy to map several invasive understory 
species in a tropical rainforest. 

In the marine realm, ocean colour (i.e. ocean surface reflectance) has been used to map 
phytoplankton groups based on in situ information about the spectral properties of 
different phytoplankton pigments (Alvain et al. 2005). Alternatively, ocean colour has 
been combined with other SRS-derived information (such as sea surface temperature and 
wind stress) to distinguish between functional types of phytoplankton with an accuracy of 
80-93% (Raitsos et al. 2008).

Mapping single plant species from space is an active research field, which is likely 
going to benefit from the growing availability of open-access radar imagery, which can 
help distinguish different growth forms (Hong et al. 2014). Additionally, the advent of 
hyperspectral spaceborne sensors (e.g. EnMAP, HyspIRI, PRISMA) should facilitate the 
identification of single species in mixed canopies, because these sensors are able to resolve 
subtle spectral differences resulting from differences in leaf chemistry and physiology (He 
et al. 2011; see also Chapter 6).
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A mixed agricultural landscape and newly planted trees comprise this landscape in the 
Philippines as seen by DigitalGlobe’s Worldview-02 satellite on August 1, 2012.
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ADVANCED SATELLITE REMOTE SENSING DATA AND 
APPLICATIONS

HIGHLIGHTS
• Recent developments in Light detection and ranging (LiDAR), hyperspectral satellite 

remote sensing, smaller and cheaper satellite platforms, and Big Data analytical 
ability have greatly expanded remote sensing horizons.

• Space-borne LiDAR has been used to estimate aboveground biomass and ecosystem 
structure, and two new missions will soon be providing opportunities to support 
ecological research and environmental management. 

• The higher spectral resolution of hyperspectral remote sensing data, relative to 
multispectral, provides opportunities for monitoring ecosystem functions such as 
resilience to disturbances by defoliating insects and fire, and the mapping of plant 
species from space.

• The new CubeSats and SmallSats are small (< 10 and < 250 kg respectively), 
relatively inexpensive satellites. They are released in large fleets rather than singly, 
enabling the daily collection of imagery of the entire Earth’s surface.

• Improvements in hardware processing power enable increasingly sophisticated and 
complex analyses of and integrations of remotely sensed datasets.

To this point, the focus of this guide has been on summarizing applications of multispectral 
and radar SRS, which are well-established tools in ecology and conservation, each 
associated with open-access, global data sets such NASA’s Landsat and MODIS and ESA’s 
Sentinel suite of satellites. To provide a more complete picture of SRS capabilities, this 
chapter provides an overview of data types and applications that represent more recent 
opportunities for SRS to inform biodiversity monitoring and conservation, including LiDAR 
and hyperspectral remote sensing (Chapter 6.1), CubeSats and SmallSats (Chapter 6.2) 
and Big Data analysis (Chapter 6.3). 

6.1 LiDAR and hyperspectral remote sensing
In an ecological context, LiDAR has been mainly used to map aspects of vertical vegetation 
structure, such as vegetation height (Wulder et al. 2012b), with applications that include 
estimating aboveground biomass (Asner et al. 2012; Xu et al. 2017), and investigating 
terrestrial (Vierling et al. 2008) and coastal (Pe’eri et al. 2011) ecosystem structure. 
Whereas the ICESat satellite did collect global LiDAR data between 2003 and 2009 (data 
was only acquired during 6 months of each year: February, March, May, June, October and 
November; Lee et al. 2011), there is currently no active spaceborne platform collecting such 
data. However, two new missions are being planned – namely GEDI (Patterson & Healey 
2015) and ICESat-2 (Brown et al. 2016) – which would increase our capability to map 
aboveground biomass, vegetation height as well as ice dynamics at global scales. Interested 
readers are referred to (Melin et al. 2017) who have reviewed the LiDAR technology and 
applications in more detail.

Hyperspectral remote sensing gives a more nuanced view of surface structure and chemical 
composition than multispectral remote sensing because it has a much higher spectral 
resolution (Chambers et al. 2007). It provides novel avenues for monitoring ecosystem 
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functions (Pettorelli et al. 2017), such as disturbance by defoliating insects (Fassnacht 
et al. 2014) and net primary productivity (Ollinger & Smith 2005). There is currently no 
spaceborne hyperspectral sensor (after Hyperion was deactivated in 2017), but there are 
three upcoming missions – Environmental Mapping and Analysis Program (EnMAP), 
the Hyperspectral Infrared Imager (HyspIRI), and the Hyperspectral Precursor of the 
Application Mission (PRISMA) – which are aimed at expanding our ability to monitor 
terrestrial and aquatic ecosystem condition and dynamics from space (Guanter et al. 2015). 
Airborne hyperspectral remote sensing has been demonstrated to be sensitive to subtle, 
species-specific variation in canopy spectra, and can be used to map plant species directly 
(He et al. 2011; Prospere et al. 2014), thereby likely allowing the mapping of individual plant 
species from space. A particularly exciting consequence of the increased spectral resolution 
could be the ability to capture genetic diversity of plant species from space (Madritch et al. 
2014).

6.2 Novel platforms: CubeSats and SmallSats
CubeSats and SmallSats are both types of small, relatively inexpensive satellites (Figure 6.1) 
– SmallSats typically weigh below 250 kg (Richardson et al. 2015), whereas CubeSats weigh 
less, and even sometimes much less than 10 kg (Marvin et al. 2016). For reference, Landsat 
8 and Sentinel 1 weigh ca. 1500 kg and 2,200 kg respectively. The know-how of putting 
all the technology necessary for a functioning satellite in such a small a space is relatively 
new, with the first CubeSat design dating from 1999 (Richardson et al. 2015). They typically 
carry multispectral sensors with a limited number of bands, but high spatial resolutions, 
which allows true colour imaging at sub-meter resolution, as well as generating vegetation 
indices such as NDVI (Marvin et al. 2016). Because these mini-satellites are much cheaper 
to produce than their larger cousins, releasing a large fleet is more economically feasible. 
As a consequence, some companies have launched constellations of small satellites with 
the aim to provide daily imagery of the entire Earth’s surface (e.g. Planet’s SkySat; Marvin 
et al. 2016). Such SRS imagery might contribute to mapping patchy or highly dynamic 
ecosystems and habitats, as well as large animal species, due to their very high spatial and 
temporal resolution (Traganos et al. 2017).

Figure 6.1. Three CubeSats in orbit as seen from the International Space Station.  
© Phil Plait (CC BY-NC-SA 2.0)
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BOX E:  USING BIG DATA FOR CHANGE DETECTION FOR MONITORING LAND   
 DEGRADATION IN KAZA
Land cover change, from conversion (e.g. clearing all vegetation for human 
settlements) to more subtle degradation (removal of large trees), is a major driver 
of species habitat loss and fragmentation (Green et al. 1998b) and threatens 
biodiversity worldwide (Sala et al. 2000; Fahrig 2003). This case study, carried 
out by Wageningen University, in collaboration with WWF and Peace Parks 
Foundation, used a time series analysis of SRS data to map anthropogenic land 
degradation in a dynamic savannah ecosystem, specifically the Kavango Zambezi 
Transfrontier Conservation Area (KAZA TFCA). A dedicated cloud computing 
platform was implemented to process the required amount of SRS data, owing 
to 1) the size of KAZA TFCA (covering portions of five different Southern African 
countries) and 2) the length of the time series (ca. 30 years, with several images 
per year).

Anthropogenic land cover conversion and degradation was detected based on 
the principle that such changes result in a sudden and persistent reduction in 
green vegetation. This contrasts with seasonal changes in vegetation, which are 
not persistent, or longer term changes due to altered climate, which are more 
gradual. Sudden and persistent shifts in vegetation were detected via the Breaks 
For Additive Seasonal and Trend (BFAST) Monitor algorithm. This algorithm 
detects linear trends and seasonal changes in a time series, and separates them 
from residual changes, and is available in the R package “bfast” (Verbesselt et 
al. 2010). The magnitude and timing of the residual changes can then be used 
to detect sudden, persistent changes in land cover that are associated with 
degradation.

To map land degradation across the KAZA TFCA, all available Landsat 4/5 TM, 7 
ETM+ and 8 OLI/TIRS available from EarthExplorer (http://earthexplorer.usgs.
gov/) were identified. This corresponds to imagery across 40 adjacent scenes 
between 1982, the date when Landsat 4 TM was launched, and 2016. Only Level-

1T scenes were chosen because they have the highest possible geodetic accuracy, 
having been georeferenced and terrain corrected using Ground Control Points 
and a digital elevation model. As a result, a majority of scenes have sub-pixel 
geometric accuracy. This is crucial for time series analysis, to ensure any detected 
change is a result of change on the ground, and not changes in sensor view. Other 
geometric processing levels (1GT and 1GS) are frequently not precise enough for 
time series analysis without aligning the imagery manually (i.e. additional co-
registration). There were, on average, 304 images per scenes available at Level-
1T between 1982 and 2016, though this varied across the study site.

The scenes were atmospherically corrected using the Landsat Ecosystem 
Disturbance Adaptive Processing System LEDAPS (Schmidt et al. 2013; USGS 
2017a) for Landsat 4-7 and the Landsat Surface Reflectance Code (LaSRC) for 
Landsat 8 (USGS 2017b). This correction is carried out on demand whenever 
atmospherically corrected scenes (“Collection 1 Higher-Level”) are ordered 
through EarthExplorer. The data are made available when processing is complete, 
and were downloaded to a cloud server via USGS’ Bulk Download Application. 
Further processing and analysis was carried out on this server because of the 
large amount of data using the programming language IDL (Interactive Data 
language) which is widely used for remote sensing data processing. However, the 
land degradation detection process was implemented later in R.

First, clouds and cloud shadows were removed using a quality layer that is 
distributed as part of the surface reflectance product. The quality layer is 
generated by the CFmask algorithm (USGS 2017a), and flags pixels which 
contain clouds, cloud shadows, water and snow. To minimize the amount of 
cloud contamination, a three-pixel buffer was removed around any cloud or 
cloud shadow pixel. This approach does not remove all atmospheric noise, but 
is sufficient to ensure that the BFAST algorithm can work. Based on the original 
spectral bands, the Normalized Difference Fraction Index (NDFI) was calculated 
for each scene. This index is based on the fraction of green vegetation, non-

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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photosynthetically active vegetation, soil, and shade for each pixel, which is 
generated from a spectral unmixing algorithm (Souza et al. 2005). The benefit 
of this approach is that, unlike the NDVI or other vegetation indices, the NDFI is 
based on information from all spectral bands. 

The NDFI time series was then partitioned into a historic baseline period (1985-
2005) and a monitoring period (2006-2016). The BFAST algorithm was applied 
to the baseline period. This resulted in a model describing a linear trend and 
seasonal changes in NDFI. This model was used to predict NDFI values until 
2016. The generated predictions were then compared to the observed data (i.e. 
the time series from 2006-2016) to see where they diverge. The principle behind 
the change detection is that if the observed time series has much lower NDFI 
values than the predicted time series, this indicates land degradation. These 
changes were aggregated by year and mapped per minimum mapping unit of 
0.5 ha (or 5,000 m2, ca. 5.5 Landsat pixels) to reduce noise (see Figure E).The 
result of the analysis is a map of disturbance, where every pixel is assigned a 
year of disturbance (or a value of 0 where no disturbance was observed). This 
provided the first analysis of land use or land cover change at this scale in 
dynamic seasonal forest ecosystem. The outputs are being used to determine 
the impacts of anthropogenic land use change in wildlife corridors, protected 
areas, important bird areas to assess the success and impacts of transboundary 
conservation efforts, and to support improved spatial planning for sustainable 
development. 

Figure E. Map of land cover change in the KAZA Transfrontier Conservation 
Area, with the year of detected disturbance. Land degradation was detected via 
time series analysis of Landsat imagery.
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6.3 Advanced processing paradigms: Big Data analysis
Improvements in hardware capacity and the increasing accessibility of SRS data have 
driven a trend towards processing and analyzing large numbers of images at once. One 
example for this Big Data approach is time series analysis. Rather than comparing two 
or three SRS scenes to detect change across a landscape, this approach reconstructs time 
series of SRS data for each pixel based on dozens or hundreds of pictures. Dense time series 
can characterize Earth surface dynamics with high temporal (often sub-annual) resolution 
(Roy et al. 2014), and have been used to map historic forest disturbance (Senf et al. 2017)
and detection of deforestation in near-real time (Hansen et al. 2016). There is a large range 
of methodological approaches to SRS time series analysis (Roy et al. 2014), including 
LandTrendr, which divides time series into segments to detect both abrupt and gradual 
changes such as deforestation and subsequent forest recovery (Kennedy et al. 2010), and 
Breaks For Additive Season and Trend (BFAST), which decomposes time series into trend, 
seasonal component and noise (Verbesselt et al. 2010). Apart from analysing many SRS 
scenes from the same sensor, a second Big Data approach to SRS analysis is integrating 
data from different types of sensors to take advantage of complimentary spatial, temporal 
or spectral resolutions. This integration includes using SRS imagery from multiple sensors 
as input into the same supervised classification algorithm to map land cover or ecosystem 
structure more accurately (Pouteau et al. 2010; Attarchi & Gloaguen 2013) or to combine 
imagery from different sources into a new, derived image via so-called image fusion (Lucas 
et al. 2014; Schulte to Bühne & Pettorelli 2017).

Regardless of its application, Big Data requires appropriate hardware and software that 
supports effective storage and processing of large quantities of data. Widely known high-
level programming languages such as R have some Big Data capabilities, even though they 
were not built for that purpose. For instance, R has dedicated packages to aid parallel 
processing (“parallel”), handling big data volumes (“big memory”) and efficient code 
compilation (“Riposte”). Python (combined with geoprocessing commands from SAGA and 
GDAL) can be even more efficient (Marvin et al. 2016). For intense processing requirements, 
there are dedicated software packages for setting up parallel processing (e.g. Hadoop). 
Alternatively, cloud computing services can be purchased from commercial providers (e.g. 
Amazon Web Services, Microsoft Azure). Google Earth Engine is an open-access option 
for cloud-based Big Data analysis, and has been used to produce large scale SRS products, 
such as the Global Forest Change map (Hansen et al. 2013), and the Global Surface Water 
product (Pekel et al. 2016), to support the Map of Life platform (Jetz & Thau 2018).
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DigitalGlobe’s QuickBird-2 satellite imaged this coral reef  
in Malaysia on May 6, 2009 with a resolution of 2.4 m.
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CAVEATS AND LIMITATIONS WHEN USING SATELLITE 
REMOTE SENSING DATA

HIGHLIGHTS
• Although satellite remotely sensed data have been applied widely in both 

conservation science and practice, there remain limitations to the information it can 
provide.

• Although species are increasingly being mapped using satellite remote sensing, the 
spatial resolution of satellite remote sensing data remains insufficient for locating 
many species of plant and animal species, and the temporal resolution of the data 
may be inadequate for detecting the dynamics of events that occur daily, especially 
where cloud cover produces long temporal gaps in datasets.

• Data coverage can vary geographically, and globally derived products should be 
treated with caution for local assessments. 

• Although many remotely sensed datasets are now open-access, much remains 
hidden behind paywalls, especially data with very high spatial resolution, or from 
hyperspectral and radar sensors. 

• The need for ground-truthing data to evaluate satellite remote sensing analyses 
and interpret results should not be underestimated. Relevant ground observations 
are increasingly being aggregated from online data platforms, and citizen science 
approaches provide additional opportunities to generate such data at large scales.

SRS data have been applied widely in both conservation science and practice, but there are 
limitations to the information they can provide. This chapter outlines three areas of potential 
constraints on the utility of satellite-derived imagery: 1) spatial and temporal resolution of 
SRS data, 2) data and product availability, 3) SRS data accessibility and literacy.

7.1 Spatial and temporal resolution of SRS data
SRS is only capable of capturing spatial patterns that can be resolved by its spatial 
resolution. SRS data with global coverage (see Appendix) typically have spatial 
resolutions of tens or hundreds of meters, limiting their application for detecting very 
small objects (see Chapter 5.4). Whereas SRS data with medium spatial resolution 
(like that of the Landsat sensors) are appropriate for mapping land cover classes forming 
relatively large contiguous patches, imagery with higher spatial resolution (i.e. < 10 m) is 
necessary when the landscape of interest varies at a finer spatial scale (for instance to map 
hedgerows in an agricultural landscape, Betbeder et al. 2015). Additionally, the spatial 
resolution of most satellite-borne sensors is generally too coarse to allow distinguishing 
individual plants, although plants which form large, relatively homogenous stands may be 
distinguished from surrounding vegetation (Huang & Asner 2009; Nagendra et al. 2013).

The temporal resolution of multispectral SRS is not only constrained by the mission 
design, but can also be reduced by cloud cover. Over the tropics and the subtropics, any 
given point on the Earth’s surface might be imaged less than once annually by satellites 
with low repeat frequencies (e.g. Landsat; Figure 7.1) because of continuous cloud cover. 
This is a problem in cases where dynamics of the earth’s surface vary at higher temporal 
frequencies than the revisit time (e.g. for near real time deforestation detection). One 
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solution is to use imagery from satellites with higher overpass frequency, such as MODIS, 
to increase the chance of obtaining cloud free images. However, it is possible that data 
gaps persist under very cloudy conditions. For instance, Garonna et al. (2009) found 
gaps in an NDVI time series over a tropical forest despite using 16-day composites and 
interpolating missing values using the previous and following values. Another alternative 
is to integrate different imagery types. For instance, Xin et al. (2013) combined MODIS 
and Landsat imagery to construct high-resolution time series, whereas Reiche et al. (2015) 
integrated Landsat and cloud-independent radar data from ALOS PALSAR to monitor 
deforestation at high temporal resolution.

Figure 7.1. Cloud coverage can severely reduce the amount of multispectral SRS data 
available, especially over tropical areas. This figure shows cloud cover in a Landsat scene 
over the Amazon, taken in April and May 2017. ©USGS, NASA.
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7.2 Data and product availability 
Though the number of satellites that provide repeated coverage of the entire earth’s surface 
is increasing, such missions are relatively new. As a result, long-term spatiotemporal 
availability of SRS data reflects historical acquisition priorities of different countries, or 
available infrastructure. For instance, there are noticeable gaps in the Landsat archive 
over Northern and Central Africa, and Western Europe before 2000, whereas the United 
States are well covered (Wulder et al. 2016). SRS imagery with very high spatial resolution 
has so far only been available from commercial satellites, whose acquisition programme 
is determined by the areas which users requested (though global coverage has more 
recently been provided by commercial fleets of smaller satellites, e.g. Planet’s SkySat fleet). 
Hyperspectral and LiDAR satellite imagery has patchy coverage, especially over biodiverse 
regions (Pettorelli et al. 2014a). As a consequence, establishing which type of SRS data 
exists over a given area of interest is an important first step in processing and analysis 
design. It might be appropriate to combine SRS data from different sensors, for instance 
to increase the number of observations in a SRS time series. This requires that the imagery 
is precisely aligned (co-registered), and resampling may be necessary if the pixel sizes are 
initially different. Integrating SRS data from different sensors during analysis is referred 
to as data fusion, and can increase the quality of information. For instance, integrating 
multispectral and radar SRS data has been shown to increase land cover classification 
accuracy (Joshi et al. 2016).

Apart from the availability of SRS data, more widespread uptake of SRS approaches in 
conservation science and management is currently hampered by an absence of operational 
SRS products optimized at a national scale (Pettorelli et al. 2014b). Processing SRS data 
requires appropriate hardware, software and expertise, which can be a considerable 
obstacle for some users. Open-access SRS products such as land cover, vegetation and 
fire indices have been primarily produced at the global scale (Appendix), and their 
local accuracy can be limited (Congalton et al. 2014; Giglio et al. 2016), limiting their 
usefulness for mapping and monitoring at smaller, management-relevant scales.

Ground-truthing information is a key element when using SRS data, and is necessary 
for training supervised classifications, quantifying the validity and reliability of the 
results, and helping to interpret the results in their proper context (Congalton et al. 
2014; Wohlfahrt et al. 2016). Collecting ground-truthing data – should it be on land 
cover distribution or tree cover, or collecting in situ spectral measurements – requires 
significant labour, time and money. Where adequate ground-truthing data are too 
expensive to obtain, open-access imagery with very high spatial resolution, such as 
Google Earth, is an alternative (Connette et al. 2016). Crowd sourcing ground truth data 
is a relatively recent approach that aims to leverage the land cover classification skills 
of human brains at large scales (Fritz et al. 2017). The largest potential opportunity for 
ground-truthing SRS data is making already existing ground-truth data available and 
accessible through online data platforms (such as Movebank, Smithsonian Wild, Map of 
Life; Pettorelli et al. 2014b).

7.3 SRS data accessibility and literacy constraints
Using SRS imagery requires reasonably fast internet speeds for downloading raw data, 
high processing power, and sufficient data storage for raw imagery and intermediate 
and final data products. Hardware and software requirements typically increase with 
study area size, resolution and the complexity of analysis. To put this into perspective, an 
average Landsat scene (ca. 180 km x 190 km) has a file size of between 500 MB (Landsat 
4-5) and 1.62 GB (Landsat 8), whereas a single Sentinel-1 scene has a size of 1 GB. Whilst 
an average laptop provides sufficient storage space and processing power to conduct a 
land cover classification based on a single-date Landsat image, processing large time 

Movebank  
https://www.movebank.
org/

Smithsonian Wild  
http://emammal.si.edu/
siwild

Map of Life  
https://mol.org/

https://www.movebank.org/
https://www.movebank.org/
http://emammal.si.edu/siwild
http://emammal.si.edu/siwild
https://mol.org/


SATELLITE REMOTE SENSING  85

series of multi-scene mosaics requires more processing power, and in some cases may 
require the use of cloud computing services (e.g. Google Earth Engine). 

More open-source SRS imagery is now available than ever before, but a considerable 
amount of useful data remains behind paywalls (Turner et al. 2015), especially SRS data 
with very high spatial resolution, or from hyperspectral and radar sensors. Additionally, 
appropriate hardware can be expensive, especially when large amounts of data have to be 
processed. Fortunately, although software used for image processing and analysis used 
to be a limitation to SRS uptake due to their cost (Pettorelli et al. 2014b), the increasing 
availability of open-access alternatives (e.g. R, QGIS or SAGA) commercial software 
donations, and relevant documentation and accessible training resources have largely 
removed this barrier to the application of SRS (Wegmann & Leutner 2016; Bernd et al. 
2017).

SRS can be a valuable tool in ecology and conservation, yet interdisciplinary collaboration 
has been limited because the remote sensing and ecology/conservation communities 
remain segregated (Pettorelli et al. 2014b). Platforms such as the Group on Earth 
Observations Biodiversity Observation Network or the group on Remote Sensing for 
Biodiversity within the Committee on Earth Observation Satellites (CEOS) provide 
important shared spaces to reduce communication problems (e.g. by encouraging the use 
of shared terminology) and transfer of data products, tools and knowledge between the 
groups. Additionally, platforms enabling data and code sharing (e.g. GitHub), provide 
an opportunity for making SRS workflows more transparent and repeatable which are 
promising a better future for remote sensing collaboration (Rocchini & Neteler 2012).

Group on Earth 
Observations  
http://geobon.org/

Remote Sensing for 
Biodiversity  
http://remote-sensing-
biodiversity.org/networks/
ceos-biodiversity/

GitHub  
https://github.com/

http://geobon.org/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
https://github.com/
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Tandem-X image of Christmas Island. Tandem X provides synthetic-aperture radar imagery using 
relatively short microwaves. As a result, the signal is scattered by small objects in its path, such as 
leaves, or small wave crests. This makes the texture of the sea and land surface visible in high detail. 
Photo: DLR (CC-BY 3.0)
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GLOSSARY
Active sensor: Sensors which emit radiation themselves, and then measure the 
returning signal.

Acquisition mode: Refers to the different modes in which spaceborne radar sensors can 
acquire imagery; they vary in swath width and spatial resolution.

Artefact: Features in SRS imagery which are a result of processing steps (such as 
pansharpening or atmospheric correction), but do not correspond to any real features 
on the ground. They can lead to errors in subsequent analysis (e.g. during land cover 
classification).

Band: A defined section of the electromagnetic spectrum in which a sensor measures 
electromagnetic radiation (Wegmann & Leutner 2016).

Bottom-of-atmosphere reflectance: See Surface Reflectance.

Brightness: Amount of energy measured by a sensor in a given pixel; mostly used in 
reference to multispectral sensors.

C-band: See Radar.

Coverage

• spatial: The surface area over which a remote sensor has provided imagery

• temporal: The time period during which a remote sensor has provided imagery.

Cubesat: Small satellite which weighs less (sometimes much less) than 10 kg (Marvin et 
al. 2016).

Earth observation: Gathering information about the atmosphere, the biosphere, land 
surface, the oceans, and solid Earth observations, often via satellite remote sensing.

Electromagnetic radiation: Radiation consisting of electromagnetic waves (i.e. waves 
that describe periodic variation in both electric and magnetic field intensity), including 
radio waves, microwaves, infrared, visible light and ultraviolet.

Footprint: Image extent or coverage. See scene.

Foreshortening: Geometric distortion of radar imagery which causes slopes which face 
the sensor to appear shorter than slopes that are tilted away.

Geometric correction: Correcting remote sensing imagery to correctly align it to an 
absolute or relative geographic location. E.g. georectification, orthorectification.

Geolocation: See georectification.

Georectification: Assigning each pixel in a remote sensing imagery the correct position 
with respect to a reference coordinate system.

Geostationary orbit: Orbit in which a satellite appears to remain fixed over a single 
point on the Earth’s surface.
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GIS: Geographic Information System; an environment for processing and analysing 
geospatial data.

Grain: Used synonymously with “spatial resolution”.

Ground geometry: With respect to radar imagery, an image in which each pixel 
corresponds to a pixel of the same area on the Earth’s surface as every other pixel.

Ground truthing: Validating remote sensing measurements or analysis results with 
observations derived from field observation.

Hyperspectral sensors: Multispectral sensors with hundreds of bands.

Image: Collection of measurements (i.e., bands) captured in the scene at a given 
time point; an image can be thought of as a particular instance of measurement of 
electromagnetic radiation from a certain scene.

Inferometry: Reconstructing the three-dimensional position of an object based on the 
phaseshift of the radar signal.

Intensity: See brightness.

LAI: Leaf Area Index, a structural canopy parameter that can be derived from satellite 
remote sensing.

Land cover: Physical properties of a given surface that can be characterised by the 
radiation that remote sensors capture (Simard et al. 2011).

L-band: See Radar.

Layer: Data file in raster format containing measurement of a scene in a single band 
(multispectral sensors) or a single polarization mode (radar sensor).

Layover: Geometric distortion of radar imagery which causes the top of tall structures 
(mountains or buildings) to appear to be closer in range than lower structures.

LiDAR: Sensors which emit a laser beam, and measure the returning signal to measure 
the distance between the sensor and the object.

Multilooking: Averaging brightness values between several adjacent parts of a radar 
image (“looks”) to reduce speckle and adjust pixel size to ground geometry.

Multispectral: Passive remote sensors which measure electromagnetic radiation in a 
limited number of narrow sections of the electromagnetic spectrum (“bands”).

NDVI: A widely used vegetation index, calculated from the red (R) and the near-infrared 
(NIR) band as NDVI = (NIR-R)/(NIR+R) (Rouse et al. 1974).

Orthorectification: Correcting remote sensing imagery for errors in geolocation as a 
result of differences in elevation (topographic errors).

Overpass frequency: Frequency with which a satellite passes over a given location on 
the Earth’s surface. Constrains temporal resolution of the imagery.

Panchromatic: A band in a multispectral sensor with a much higher spatial resolution 
covering a much larger range of wavelengths than the other band. This band can be used 
to pansharpen the other bands.
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Pansharpening: A process in which the brightness values of coarser-grain multispectral 
bands are substituted for those of the panchromatic band of the same sensor, resulting in 
an image with higher spatial resolution.

Passive sensors: Sensors which do not emit radiation themselves, and measure 
radiation which is reflected, emitted or scattered by an object.

P-band: See Radar.

Polarization: Orientation of the wavelengths of electromagnetic radiation. Radar 
sensors can transmit and receive radiation in horizontal and/or vertical polarization.

Polar orbit: An orbit in which a satellite passes over, or near the poles.

Radar: Active remote sensing based on the principle of transmitting a signal (radiation 
in the microwave or radiowave part of the electromagnetic spectrum) and deriving 
information about the Earth’s surface from the returning signal. Radar can be categorised 
according to the wavelength of the transmitted and received signal (e.g. X, C, L or P-band 
in order of increasing wavelength).

Radiance: The amount of radiation reflected from a unit surface area, measured by a 
remote sensor as Watt per solid angle and unit area [W·sr−1·m−2].

Radiometric resolution: Ability of a remote sensor to distinguish differences in the 
intensity of electromagnetic radiation.

Raster: Rectangular grid of pixels, each of which has an associated measurement (such 
as radiance) and geographic location. Satellite imagery is distributed in different raster 
formats, e.g. GeoTIFFs.

Reflectance: The proportion of radiation that is reflected back by an object (instead of 
being absorbed or transmitted), i.e. the ratio of incident and reflected radiation.

Repeat frequency: See overpass frequency.

Resolution 

• spatial: The smallest object that can be identified by a given sensor; corresponds 
to the size of an individual pixel.

• temporal: Time between two successive images of the same location, and is 
given by the repeat frequency of a satellite.

• spectral: Sensitivity of a remote sensor to differences in wavelength of 
electromagnetic radiation.

• radiometric: Sensitivity of a remote sensor to differences in the intensity of 
electromagnetic radiation.

SAR: See Synthetic Aperture Radar.

Satellite: Spaceborne carrier of remote sensors and ancillary technology.

Satellite Remote Sensing (SRS): Identifying, observing and measuring objects on the 
Earth’s surface via a spaceborne sensor.
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Scene: The area across which a remote sensor makes measurements. SRS data are 
normally available as different scenes, whose size vary between sensors but are normally 
in the 100s or 1,000s of km2. This means that, to make an image covering a large area 
(such as a country), many adjacent scenes have to be mosaicked together.

Sensor: Device that measures the intensity of electromagnetic radiation.

Signal: The electromagnetic radiation detected and (for active sensors) emitted by a 
remote sensor.

Smallsat: A small satellite which typically weighs below 250 kg (Richardson et al. 2015).

Speckle: “Salt-and-pepper” effects common in radar/SAR images; can be corrected e.g. 
via multilooking.

Spectral resolution: Ability of a remote sensor to detect differences in wavelength of 
electromagnetic radiation.

Sun-synchronous orbit: Orbit in which a satellite flies over a given location at the 
same solar time during each pass.

Surface Reflectance: Radiance measured by a multispectral sensor which has been 
corrected for sensor, solar and atmospheric effects.

Synthetic Aperture Radar: Artificially increasing the antenna length of a radar sensor 
to increase its spatial resolution; technology underlying all spaceborne radar sensors.

Tile: See Scene.

Top-of-atmosphere reflectance: Radiance measured by a multispectral sensor which 
has been corrected for sensor and solar, but not atmospheric effects.

Vegetation Index: Linear combinations of different multispectral bands which are 
sensitive to variations in vegetation “greeness” and provide synoptic views of vegetation 
dynamics.

X-band: See Radar.
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A well trained eye might see the large herd of elephants crossing this wetland savanna in 
the Zambezi region of Namibia. Data collected by Digital Globe’s Worldview-02 satellite can 
detect anything smaller than a meter with a pan-sharpening resolution of less than 50cm.
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(A) Multispectral SRS data

SATELLITE SENSOR SPATIAL RESOLUTION COLLECTION 
FREQUENCY

SPATIAL COVERAGE TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

Envisat 
MERIS

15 MS Ocean: 1040 m x 
1200 m, Land & 
coast: 260 m x 300 m

3 days Global 2002 Open-
access

ESA Free data sets (see 
https://earth.esa.int/web/
guest/pi-community/
apply-for-data)

https://earth.esa.int/web/guest/missions/
esa-operational-eo-missions/envisat/
instruments/meris 

AVHRR 4 MS, 2 T 1090 m Daily Global 1978 -present Open-
access

EarthExplorer(https://
earthexplorer.usgs.gov/)

NOAA/NESDIS 2014

OrbView-2 
SeaWiFS

8 MS 1 km Daily Global 1997 - 2010 Open-
access

https://oceandata.sci.
gsfc.nasa.gov/SeaWiFS/
Mapped/Monthly/9km/
chlor_a

https://oceancolor.gsfc.nasa.gov/
SeaWiFS/ ; https://directory.eoportal.
org/web/eoportal/satellite-missions/o/
orbview-2

MODIS 
Terra/Aqua

30 MS, 
6 T

250 m, 500 m, 1,000 
m, 5,600 m

Daily (8 day 
composite 
available)

Global Feb 2000 - 
present/ July 
2002 -present

Open-
access 

EarthExplorer(https://
earthexplorer.usgs.gov/, 
under NASA LPDAAC 
Collections) 

Vermote  S.Y. Kotchenova and J.P. Ray 
2011https://modis.gsfc.nasa.gov/data/
dataprod/

Landsat 4/5 
TM 

6 MS, 1 T MS/T: 30 m 16 days Global July 1982 -May 
2012

Open-
access 

EarthExplorer(https://
earthexplorer.usgs.gov/)

https://landsat.usgs.gov/what-are-band-
designations-landsat-satellites, USGS 
2017; Young et al. 2017

Landsat 7 
ETM+ 

6 MS, 1 T, 
1 PAN

MS/T: 30 mPAN: 
15 m 

16 days Global April 1999 - 
present

Open-
access

EarthExplorer(https://
earthexplorer.usgs.gov/)

USGS 2010; Young et al. 2017

Landsat 8 
OLI/TIRS 

8 MS, 2 T, 
1 PAN

MS/T: 30 mPAN: 
15 m

16 days Global April 2013 
-present

Open-
access

EarthExplorer(https://
earthexplorer.usgs.gov/)

USGS 2016; Young et al. 2017

Terra 
ASTER

10 MS, 
5 T

15 m (VNIR), 30 m 
(SWIR), 90 m (TIR)

Variable, but 
minimum 16 
days

Variable, but 
potentially 
global (tasked)

2000 -present Open-
access

Access options at https://
asterweb.jpl.nasa.gov/
data.asp, including USGS 
EarthExplorer

Abrams 2000; Abrams et al. 2015; USGS 
2015 https://lpdaac.usgs.gov/node/1091 

Sentinel 2 
MSI 

12 MS 10 m, 20 m or 60 m, 
depending on the 
band

A & B: 5 days 
(at equator); A 
or B: 10 days 
(at equator)

Global June 2015 
(A) -present/
March 2017 (B) 
- present

Open-
access 

Copernicus Open Access 
Hub (https://scihub.
copernicus.eu/dhus/#/
home)

Drusch et al. 2012; ESA 2015 https://
sentinel.esa.int/web/sentinel/user-
guides/sentinel-2-msi/processing-levels 

APPENDIX 
Widely used multispectral remote sensing (A) and radar (B) SRS data, as well as derived SRS products (C) with global, or close to global, coverage.  
This is not a complete list of all available data or derived data products. MS = multispectral bands. PAN = panchromatic band. T = Thermal bands.

https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/chlor_a
https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/chlor_a
https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/chlor_a
https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/chlor_a
https://oceancolor.gsfc.nasa.gov/SeaWiFS/
https://oceancolor.gsfc.nasa.gov/SeaWiFS/
https://directory.eoportal.org/web/eoportal/satellite-missions/o/orbview-2
https://directory.eoportal.org/web/eoportal/satellite-missions/o/orbview-2
https://directory.eoportal.org/web/eoportal/satellite-missions/o/orbview-2
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://landsat.usgs.gov/what-are-band-designations-landsat-satellites
https://landsat.usgs.gov/what-are-band-designations-landsat-satellites
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://asterweb.jpl.nasa.gov/data.asp
https://asterweb.jpl.nasa.gov/data.asp
https://asterweb.jpl.nasa.gov/data.asp
https://lpdaac.usgs.gov/node/1091
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels
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SATELLITE SENSOR SPATIAL 
RESOLUTION

COLLECTION 
FREQUENCY

SPATIAL COVERAGE TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

SPOT 1-3 
(HRV)

3 MS, 1 
PAN

MS: 20 m, 
PAN:10 m

1 to 3 days Global coverage 1986 - 2013 Free on request 
(https://earth.esa.
int/web/guest/
data-access/how-
to-access-esa-
data)

NA https://earth.esa.int/web/guest/data-
access/browse-data-products/-/article/
spot-1-to-4-hrv-ir-archive 

SPOT 4 
(HRVIR, 
VEGETATION)

4 MS, 1 
PAN

MS: 20 m, 
PAN: 10 m

Nearly daily Global 1998 - 2013 Free on request 
(https://earth.esa.
int/web/guest/
data-access/how-
to-access-esa-
data)

NA https://directory.eoportal.org/web/
eoportal/satellite-missions/s/spot-4 

SPOT 5 (HRG) 4 MS, 
1PAN

MS: 10 - 20 m, 
PAN: 2.5 m

2 - 3 days; 5 
days since 
2015

Not global; 
above sites of 
interest

2002 -present Free on request 
(ESA 2015b)

NA https://directory.eoportal.org/web/
eoportal/satellite-missions/s/spot-5 

SPOT 6-7 4 MS, 1 
PAN

6 m (MS), 1.5 
m (PAN)

Variable; 
daily 
possible

Variable, but 
potentially 
global (tasked)

2012/2014 Commercial Airbus GeoStore 
(http://www.
intelligence-airbusds.
com/geostore/) 

http://www.intelligence-airbusds.com/
en/4388-spot-1-to-spot-5-satellite-
images, https://directory.eoportal.org/
web/eoportal/satellite-missions/s/
spot-6-7 

RapidEye 1-5 5 MS 6.5 m 1 - 5.5 days Global 2008 -present Commercial https://www.planet.
com

Toth & Jóźków 2016

IKONOS 4 MS, 1 
PAN

0.8 m - 3.2 m 3 days Global 1999 - 2015 Commercial https://www.
digitalglobe.com/

https://www.digitalglobe.com/
resources/satellite-information 

Pléiades 1/2 4 MS, 1 
PAN

2.8 m (MS), 0.7 
m (PAN)

Daily Global 2011/2012 Commercial http://www.
intelligence-airbusds.
com/pleiades/

Gleyzes et al. 2012

QuickBird 4 MS, 1 
PAN

0.60 m-2.4 m 1 - 3.5 days 
(at equator)

Global 2002 - 2015 Commercial Digital Globe (https://
www.digitalglobe.
com/) 

http://glcf.umd.edu/data/quickbird/; 
Digital Ata 2001

WorldView 
2/3

8 MS, 1 
PAN

PAN: 0.46 
m/0.31 mMS: 
1.84 m/1.24 m

1 - 2 days Variable, but 
potentially 
global (tasked)

2009/2014 
-present

Commercial Digital Globe (https://
www.digitalglobe.
com/)

DigitalGlobe 2017b

GeoEye 4 MS, 1 
PAN

PAN: 0.41 
mMS: 1.65 m

11 days Variable, but 
potentially 
global (tasked)

2008 -present Commercial https://www.
digitalglobe.com/

DigitalGlobe 2017a

https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/spot-1-to-4-hrv-ir-archive
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/spot-1-to-4-hrv-ir-archive
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/spot-1-to-4-hrv-ir-archive
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://earth.esa.int/web/guest/data-access/how-to-access-esa-data
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-4
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-4
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-5
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-5
http://www.intelligence-airbusds.com/geostore/
http://www.intelligence-airbusds.com/geostore/
http://www.intelligence-airbusds.com/geostore/
http://www.intelligence-airbusds.com/en/4388-spot-1-to-spot-5-satellite-images
http://www.intelligence-airbusds.com/en/4388-spot-1-to-spot-5-satellite-images
http://www.intelligence-airbusds.com/en/4388-spot-1-to-spot-5-satellite-images
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-6-7
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-6-7
https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-6-7
https://www.planet.com
https://www.planet.com
https://www.digitalglobe.com/
https://www.digitalglobe.com/
https://www.digitalglobe.com/resources/satellite-information
https://www.digitalglobe.com/resources/satellite-information
http://www.intelligence-airbusds.com/pleiades/
http://www.intelligence-airbusds.com/pleiades/
http://www.intelligence-airbusds.com/pleiades/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
http://glcf.umd.edu/data/quickbird/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
https://www.digitalglobe.com/
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(B) Radar SRS data

NAME SENSOR SPATIAL 
RESOLUTION

COLLECTION 
FREQUENCY

SPATIAL 
COVERAGE

TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

JERS-1 L-band SAR 18 m 44 days Global 1992 - 1998 Open-access ESA Free data sets (see 
https://earth.esa.int/web/
guest/pi-community/apply-
for-data)

https://directory.eoportal.
org/web/eoportal/satellite-
missions/j/jers-1 

ALOS PALSAR L-band SAR 10 m – 100 m 46 days Global 2006 - 2011 Open-access Alaska Satellite Facility 
(https://vertex.daac.asf.
alaska.edu/) ESA Free data 
sets (see https://earth.esa.
int/web/guest/pi-community/
apply-for-data)

JAXA 2008

ALOS-2 L-band SAR 3 m – 100 m 14 days Global 2014 
-present

Commercial http://en.alos-pasco.com/ http://en.alos-pasco.com/
new/2017/02.html 

Envisat ASAR C-band SAR 30 – 1,000 m, 
depending on 
acquisition 
mode

35 days Variable, but 
potentially 
global 
(tasked)

2002 - 2012 Open-access ESA Free data sets (see 
https://earth.esa.int/web/
guest/pi-community/apply-
for-data) 

Toth & Jóźków 2016 
https://earth.esa.int/web/sppa/
mission-performance/esa-
missions/envisat/asar/sensor-
description 

ERS-1/2 C-band SAR 30 m – 50 km, 
depending on 
acquisition 
mode

35 days Global 1991 - 2000 
(ERS-1), -1995 
- 2011 (ERS-2)

Open-access ESA Free data sets (see 
https://earth.esa.int/web/
guest/pi-community/apply-
for-data)

https://directory.eoportal.
org/web/eoportal/satellite-
missions/e/ers-1 

Sentinel 1 SAR C-band SAR 5 – 40 m, 
depending on 
acquisition 
mode 

A & B: 3 days 
(at equator); 
A or B: 6 days 
(at equator)

Global 2014 (April), 
2016 (B)

Open-access Copernicus Open Access Hub 
(https://scihub.copernicus.eu/
dhus/#/home)

Potin 2013

RADARSAT-1/2 C-band SAR 3 – 100 m 24 days Variable, but 
potentially 
global 
(tasked)

1995/2007 
-present

Commercial MDA (http://mdacorporation.
com/corporate)

Sinha et al. 2015

TerraSAR-X X-band SAR 0.25 – 18 m 2.5 days Global 2007 
-present

Free (requires 
project proposal)

https://terrasar-x-archive.
terrasar.com/

https://tandemx-science.dlr.
de/; https://earth.esa.int/web/
guest/pi-community/apply-for-
data/3rd-party 

TanDEM-X X-band SAR 1 – 18 m 2.5 days Global 2010 
-present

The derived DEM 
is free; other data 
requires project 
proposal

https://tandemx-science.dlr.
de/

https://tandemx-science.dlr.
de/pdfs/TD-GS-PS-0021_DEM-
Product-Specification_v3.1.pdf 

https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
http://en.alos-pasco.com/
http://en.alos-pasco.com/new/2017/02.html
http://en.alos-pasco.com/new/2017/02.html
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/sppa/mission-performance/esa-missions/envisat/asar/sensor-description
https://earth.esa.int/web/sppa/mission-performance/esa-missions/envisat/asar/sensor-description
https://earth.esa.int/web/sppa/mission-performance/esa-missions/envisat/asar/sensor-description
https://earth.esa.int/web/sppa/mission-performance/esa-missions/envisat/asar/sensor-description
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://earth.esa.int/web/guest/pi-community/apply-for-data
https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/e/ers-1
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
http://mdacorporation.com/corporate
http://mdacorporation.com/corporate
https://terrasar-x-archive.terrasar.com/
https://terrasar-x-archive.terrasar.com/
https://tandemx-science.dlr.de/; https://earth.esa.int/web/guest/pi-community/apply-for-data/3rd-party
https://tandemx-science.dlr.de/; https://earth.esa.int/web/guest/pi-community/apply-for-data/3rd-party
https://tandemx-science.dlr.de/; https://earth.esa.int/web/guest/pi-community/apply-for-data/3rd-party
https://tandemx-science.dlr.de/; https://earth.esa.int/web/guest/pi-community/apply-for-data/3rd-party
https://tandemx-science.dlr.de/
https://tandemx-science.dlr.de/
https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf
https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf
https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf
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SATELLITE DESCRIPTION SPATIAL 
RESOLUTION

COLLECTION 
FREQUENCY

SPATIAL 
COVERAGE

TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

VEGETATION INDICES AND BIOPHYSICAL PARAMETERS (MONITORING VEGETATION PHENOLOGY, STRUCTURE, PRIMARY PRODUCTIVITY; USED IN ECOSYSTEM MAPPING, SPECIES DISTRIBUTION MODELLING)
MODIS 
Vegetation 
Index Products

NDVI & EVI, based 
on MODIS Surface 
Reflectance 

250 m, 500 m, 
1,000 m or ca. 
5,600 m

16 days, 
monthly

Global 
(terrestrial)

Feb 2000 - 
present/ July 
2002-present

Open-access USGS EarthExplorer 
https://earthexplorer.
usgs.gov/ (under NASA 
LPDAAC Collections)

Solano et al. 2010

MODIS LAI Leaf Area Index, based 
on MODIS Surface 
Reflectance & NDVI

500 m 4 or 8 days Global February 2000 
– present/ July 
2002-present

Open-access USGS EarthExplorer 
https://earthexplorer.
usgs.gov/ (under NASA 
LPDAAC Collections)

LP DAAC 2015

MODIS 
chlorophyll-α 
concentration

Chlorophyll-α in 
surface water, based 
on MODIS Surface 
Reflectance

4.6 km Daily Global 2002 - present Open-access NASA Ocean Color 
(https://oceancolor.
gsfc.nasa.gov/cgi/
browse.pl)

Hu et al. 2012

MODIS Land 
Cover Dynamics

Phenology dynamics, 
based on MODIS 
Surface Reflectance

500 m Annually Global 
(terrestrial)

2001 - 2012 Open-access USGS EarthExplorer 
https://earthexplorer.
usgs.gov/  (under NASA 
LPDAAC Collections)

https://lpdaac.usgs.gov/
dataset_discovery/modis/
modis_products_table/
mcd12q2 

FIRE PRODUCTS (MONITORING ANTHROPOGENIC AND WILDFIRE; DETECTING CHANGES IN FIRE REGIME)
MODIS Thermal 
anomalies/Fire

Location of active fires  1 km Daily, 
or 8 day 
composite

Global February 2000 
– present/ July 
2002-present

Open-access USGS EarthExplorer 
https://earthexplorer.
usgs.gov/ (under NASA 
LPDAAC Collections)

Oom & Pereira 2012; Giglio 
2015

MODIS Burned 
area product

Date of burning 500 km Monthly Global 2000 - present Open-access LP DAAC (http://reverb.
echo.nasa.gov/)

Boschetti et al. 2008; Mouillot 
et al. 2014

VIIRS Active Fire 
Product

Location of active fires 375 m Daily Global 2012 - present Open-access NASA Earth Data 
(https://earthdata.nasa.
gov/earth-observation-
data/near-real-time/
firms/active-fire-data) 

Schroeder 2015

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q2
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q2
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q2
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q2
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://reverb.echo.nasa.gov/
http://reverb.echo.nasa.gov/
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
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SATELLITE DESCRIPTION SPATIAL 
RESOLUTION

COLLECTION 
FREQUENCY

SPATIAL 
COVERAGE

TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

LAND COVER PRODUCTS, ECOSYSTEM AND HABITAT MAPPING AND CHANGE DETECTION
MODIS Vegetation 
continuous fields

Proportional cover 
of vegetative covers 
(woody, herbaceous, bare 
ground), based on MODIS 
Terra & Landsat

250 m Annually Global 
(terrestrial)

2000 - 2013 Open-
access

USGS EarthExplorer https://
earthexplorer.usgs.gov/ (under NASA 
LPDAAC Collections)

Townshend et al. 2011

MODIS Land cover 
type

17 land cover classes 500 m Annually Global 
(terrestrial)

2001 - 
2012/13

Open-
access

https://lpdaac.usgs.gov/data_access/
data_pool 

Friedl et al. 2010

MODIS Vegetative 
Cover Conversion

16 land cover change 
classes

250 m Annually Global 
(terrestrial)

2000 - 
present

Open-
access

https://e4ftl01.cr.usgs.gov/MOLT/ Zhan et al. 2002

Landsat Global 
Forest Change

Forest cover in 2000, 
forest loss, gain cf. 2015 & 
year of loss/gain

30 m Change 
between two 
years

Global 
(terrestrial)

2000 - 2015 Open-
access

https://earthenginepartners.appspot.
com/science-2013-global-forest

Hansen et al. 2013

Global 30m Tree 
Cover

Proportion of peak 
growing-season tree 
canopy cover

30 m NA Global 
(terrestrial)

2010 Open-
access

https://landcover.usgs.gov/glc/
TreeCoverDescriptionAndDownloads.
php

Hansen et al. 2013

Landsat Tree 
Cover Continuous 
Fields

Per-pixel cover of 
vegetation >5m

30 m NA Global 2000 & 
2005

Open-
access

http://glcf.umd.edu/data/
landsatTreecover/

Sexton et al. 2013

Global 30m Bare 
Ground

Proportion of peak 
growing-season bare 
ground cover

30 m NA Global 
(terrestrial)

2010 Open-
access

https://landcover.usgs.gov/glc/
BareGroundDescriptionAndDownloads.
php

Hansen et al. 2013

IGBP DISCover 17 land cover categories, 
based on AVHRR

1 km NA Global 
(terrestrial)

1992/1993 Open-
access

ORNL DAAC (https://daac.ornl.gov/cgi-
bin/dsviewer.pl?ds_id=930&nav=OGC)

Loveland et al. 2000; 
Congalton et al. 2014

University of 
Maryland Land 
Cover

14 land cover categories, 
based on AVHRR

1 km, 8 km 
or ca. 110 
km

NA Global 
(terrestrial)

1992/1993 Open-
access

http://glcf.umd.edu/data/landcover/ Hansen et al. 2000; 
Congalton et al. 2014

Global Land Cover 
2000

22 land cover categories, 
based on SPOT 
VEGETATION-1

1 km NA Global 
(terrestrial)

1999/2000 Open-
access 

http://forobs.jrc.ec.europa.eu/products/
glc2000/products.php

Congalton et al. 2014

GlobCover 
2005/2009

22 land cover classes, 
based on Envisat MERIS

300 m NA Global 
(terrestrial)

2005 & 
2009

Open-
access

http://due.esrin.esa.int/page_globcover.
php

Arino et al. 2012

CCI Land cover 22 land cover classes, 
based on AVHRR, MERIS & 
PROBA-V

300 m Annual Global 
(terrestrial)

1992 - 2015 Open-
access

http://maps.elie.ucl.ac.be/CCI/viewer/ https://www.
esa-landcover-cci.
org/?q=node/175

(C) Derived SRS products

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
https://e4ftl01.cr.usgs.gov/MOLT/
https://earthenginepartners.appspot.com/science-2013-global-forest
https://earthenginepartners.appspot.com/science-2013-global-forest
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
http://glcf.umd.edu/data/landsatTreecover/
http://glcf.umd.edu/data/landsatTreecover/
https://landcover.usgs.gov/glc/BareGroundDescriptionAndDownloads.php
https://landcover.usgs.gov/glc/BareGroundDescriptionAndDownloads.php
https://landcover.usgs.gov/glc/BareGroundDescriptionAndDownloads.php
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=930&nav=OGC
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=930&nav=OGC
http://glcf.umd.edu/data/landcover/
http://forobs.jrc.ec.europa.eu/products/glc2000/products.php
http://forobs.jrc.ec.europa.eu/products/glc2000/products.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://maps.elie.ucl.ac.be/CCI/viewer/
https://www.esa-landcover-cci.org/?q=node/175
https://www.esa-landcover-cci.org/?q=node/175
https://www.esa-landcover-cci.org/?q=node/175
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SATELLITE DESCRIPTION SPATIAL 
RESOLUTION

COLLECTION FREQUENCY TEMPORAL 
COVERAGE

COST? AVAILABLE FROM REFERENCES

OTHER
NOAA Coral 
Reef Watch 
products

Sea Surface Temperature (SST), 
7-day SST trend, SST Anomaly, 
Coral Bleaching HotSpots, Degree 
Heating Weeks & 7-day maximum 
Bleaching Alert Area

5 km Daily 2013 - 
present

Open-
access

NOAA Coral Reef Watch (https://
coralreefwatch.noaa.gov/
satellite/bleaching5km/index.
php)

Liu et al. 2014

Global Surface 
Water Change

Surface water occurrence, change, 
seasonality, recurrence, transition 
& extent based on Landsat satellite 
data

30 m Change between two 
epochs (1984-1999; 
2000-2015); monthly 
(extent & recurrence); 
yearly (seasonality)

1984 - 2015 Open-
access

Browse: https://global-surface-
water.appspot.com/ 
Download: https://global-surface-
water.appspot.com/download

JRC 2016; Pekel et al. 
2016

https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php
https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php
https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php
https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/download
https://global-surface-water.appspot.com/download
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Africa as seen from space by the Terra MODIS sensor. Satellite remote sensing is a key source 
of information in for a range of scientific disciplines – from meteorology and geography to 
ecology – as providing wall-to-wall coverage of the state of the Earth’s surface.  
Source: NASA (Reto Stöckli and Robert Simmon).
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A natural-colour image acquired by Landsat 8 OLI, showing phytoplankton blooming east 
of the Shetland Islands (visible on the left). Multispectral remote sensing has been used 
to monitor primary productivity in the oceans, as well as map shallow benthic habitats. 
Source: NASA Earth Observatory image by Joshua Stevens, using Landsat data from USGS.


